GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.
Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( K = 5 nM), potent anti-HCV 2a activity (EC = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.
Hepsin is an integral membrane protein that may participate in cell growth and in maintaining proper cell morphology and is overexpressed in a number of primary tumors. We have determined the 1.75 A resolution structure of the extracellular component of human hepsin. This structure includes a 255-residue trypsin-like serine protease domain and a 109-residue region that forms a novel, poorly conserved, scavenger receptor cysteine-rich (SRCR) domain. The two domains are associated with each other through a single disulfide bond and an extensive network of noncovalent interactions. The structure suggests how the extracellular region of hepsin may be positioned with respect to the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.