We analysed the change of spatial genetic structure (SGS) of reproductive individuals over time in an expanding Pinus halepensis population. To our knowledge, this is the first empirical study to analyse the temporal component of SGS by following the dynamics of successive cohorts of the same population over time, rather than analysing different age cohorts at a single time. SGS is influenced by various factors including restricted gene dispersal, microenvironmental selection, mating patterns and the spatial pattern of reproductive individuals. Several factors that affect SGS are expected to vary over time and as adult density increases. Using air photo analysis, tree-ring dating and molecular marker analysis we reconstructed the spread of reproductive individuals over 30 years beginning from five initial individuals. In the early stages, genotypes were distributed randomly in space. Over time and with increasing density, fine-scale (< 20 m) SGS developed and the magnitude of genetic clustering increased. The SGS was strongly affected by the initial spatial distribution and genetic variation of the founding individuals. The development of SGS may be explained by fine-scale environmental heterogeneity and possibly microenvironmental selection. Inbreeding and variation in reproductive success may have enhanced SGS magnitude over time.
Effective seed dispersal, combining both dispersal and postdispersal (establishment) processes, determines population dynamics and colonization ability in plants. According to the Janzen-Connell (JC) model, high mortality near the mother plant shifts the offspring establishment distribution farther away from the mother plant relative to the seed dispersal distribution. Yet, extending this prediction to the distribution of mature (reproductive) offspring remains a challenge for long-living plants. To address this challenge, we selected an isolated natural Aleppo pine (Pinus halepensis) population in Mt. Pithulim (Israel), which expanded from five ancestor trees in the beginning of the 20th century into ∼2000 trees today. Using nine microsatellite markers, we assigned parents to trees established during the early stages of population expansion. To elucidate the effect of the distance from the mother plant on postdispersal survival, we compared the effective seed dispersal kernel, based on the distribution of mother-offspring distances, with the seed dispersal kernel, based on simulations of a mechanistic wind dispersal model. We found that the mode of the effective dispersal kernel is shifted farther away than the mode of the seed dispersal kernel, reflecting increased survival with increasing distance from the mother plant. The parentage analysis demonstrated a highly skewed reproductive success and a strong directionality in effective dispersal corresponding to the wind regime. We thus provide compelling evidence that JC effects act also on offspring that become reproductive and persist as adults for many decades, a key requirement in assessing the role of postdispersal processes in shaping population and community dynamics.
Stopping-over is critical for migrating birds. Yet, our knowledge of bird stopover distributions and their mechanisms near wide ecological barriers is limited. Using low elevation scans of three weather radars covering 81,343 km2, we quantified large-scale bird departure patterns during spring and autumn (2014–2018) in between two major ecological barriers, the Sahara Desert and Mediterranean Sea. Boosted Regression Tree models revealed that bird distributions differed between the seasons, with higher densities in the desert and its edge, as well as inland from the sea, during spring and a predominantly coastal distribution in the autumn. Bird distributions were primarily associated with broad-scale geographic and anthropogenic factors rather than individual fine-scale habitat types. Notably, artificial light at night strongly correlated with high densities of migrants, especially in the autumn. Autumn migrants also selected sites located close to water sources. Our findings substantially advance the understanding of bird migration ecology near ecological barriers and facilitate informed conservation efforts in a highly populated region by identifying a few high-priority stopover areas of migrating birds.
Large-scale spatial gradients of environmental conditions shape organisms, populations and ecosystems. Even though environmental gradients are a key research theme in macro-ecology and biogeography, the effects of large-scale, east-west, environmental gradients are largely overlooked compared with north-south gradients. Our study focused on feather moult, an important and energy demanding process in birds. By comparing Western and Eastern Palearctic populations of 21 species, we found that juvenile passerines in the Western and Eastern Palearctic differ in the number of feathers moulted as part of their post-juvenile moult. This difference is most likely the result of a large-scale climatic gradient in cold season duration and consequent differences in the time available for moulting. Eastern populations were characterized by a limited extent of feather moult that was additionally affected by migration distance and body mass. The longer migration distance in the Eastern Palearctic caused a generally less extensive moult while high body mass was correlated with a low difference in moult extent between the Western and Eastern Palearctic regions. These results highlight the importance of linking annual cycle processes at the organismal level to the specific environmental conditions within the distribution range of each species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.