One sentence summary:We describe a general liquid-phase method to exfoliate layered compounds to give monoand few-layer flakes in large quantities. TMDs consist of hexagonal layers of metal atoms, M, sandwiched between two layers of chalcogen atoms, X, with stoichiometry MX 2 . While the bonding within these tri-layer sheets is covalent, adjacent sheets stack via van der Waals interactions to form a 3D crystal. TMDs occur in more than 40 different types (2, 3) depending on the combination of chalcogen (S, Se or Te) and transition metal(3). Depending on the co-ordination and oxidation state of the metal atoms, TMDs can be metallic, semi-metallic or semiconducting(2, 3), e.g. WS 2 is a semiconductor while NbSe 2 is a metal(3). In addition, superconductivity(4) and charge density wave effects(5) have been observed in some TMDs. This versatility makes them potentially useful in many areas of electronics.However, like graphene(6), layered materials must be exfoliated to fulfil their full potential. For example, films of exfoliated Bi 2 Te 3 should display enhanced thermoelectric efficiency by suppression of thermal conductivity(7). Exfoliation of 2D topological insulators such as Bi 2 Te 3 and Bi 2 Se 3 would reduce residual bulk conductance, 4 highlighting surface effects. In addition, we can expect changes in electronic properties as the number of layers is reduced e.g. the indirect bandgap of bulk MoS 2 becomes direct in few-layer flakes(8). Although exfoliation can be achieved mechanically on a small scale(9, 10), liquid phase exfoliation methods are required for many applications(11).Critically, a simple liquid exfoliation method would allow the formation of novel hybrid and composite materials. While TMDs can be chemically exfoliated in liquids(12-14), this method is time consuming, extremely sensitive to the environment and incompatible with most solvents.We demonstrate exfoliation of bulk TMD crystals in common solvents to give mono-and few layer nano-sheets. This method is insensitive to air and water and can potentially be scaled up to give large quantities of exfoliated material. In addition, we show that this procedure allows the formation of hybrid films with enhanced properties.We initially sonicated commercial MoS 2 , WS 2 and BN (15, 16) powders in a number of solvents with varying surface tensions. The resultant dispersions were centrifuged and the supernatant decanted (Section S3). Optical absorption spectroscopy showed that the amount of material retained (characterised by / A l C α = , where A/l is the absorbance per length, α is the extinction coefficient and C is the concentration) was maximised for solvents with surface tension close to 40 mJ/m 2 (17, 18) ( Fig. 1A-C). Detailed analysis, within the framework of Hansen solubility parameter theory(19), shows successful solvents to be those with dispersive, polar and H-bonding components of the cohesive energy density within certain well-defined ranges (Section S4, Figs. S2-S3). This can be interpreted to mean that successful solvents are those w...
Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe ) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that, in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe) monolayer, while for thicker films it could originate from a combination of vdW MnSe and/or interfacial magnetism of α-MnSe(111). Magnetization measurements of monolayer MnSe films on GaSe and SnSe epilayers show ferromagnetic ordering with a large saturation magnetization of ∼4 Bohr magnetons per Mn, which is consistent with the density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe. Growing MnSe films on GaSe up to a high thickness (∼40 nm) produces α-MnSe(111) and an enhanced magnetic moment (∼2×) compared to the monolayer MnSe samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveals an abrupt and clean interface between GaSe(0001) and α-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.
We demonstrate the use of a scanning transmission electron microscope (STEM) equipped with a monochromator and an electron energy loss (EEL) spectrometer as a powerful tool to study localized surface plasmons in metallic nanoparticles. We find that plasmon modes can be influenced by changes in nanostructure geometry and electron beam damage and show that it is possible to delineate the two effects through optimization of specimen preparation techniques and acquisition parameters. The results from the experimental mapping of bright and dark plasmon energies are in excellent agreement with the results from theoretical modeling.
We demonstrate the use of high-resolution electron beam lithography to fabricate complex nanocavities with nanometric spatial and positional control. The plasmon modes of these nanostructures are then mapped using electron energy-loss spectroscopy in a scanning transmission electron microsope. This powerful combination of patterning and plasmon mapping provides direct experimental verification to theoretical predictions of plasmon hybridization theory in complex metal nanostructures and allows the determination of the full mode spectrum of such cavities.
We report on the fabrication and characterization of a DNA nanopore detector with integrated tunneling electrodes. Functional tunneling devices were identified by tunneling spectroscopy in different solvents and then used in proof-of-principle experiments demonstrating, for the first time, concurrent tunneling detection and ionic current detection of DNA molecules in a nanopore platform. This is an important step toward ultrafast DNA sequencing by tunneling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.