699M any two-dimensional (2D) materials exist in bulk form as stacks of strongly bonded layers with weak interlayer attraction, allowing exfoliation into individual, atomically thin layers 1 . The form receiving the most attention today is graphene, the monolayer counterpart of graphite. The electronic band structure of graphene has a linear dispersion near the K point, and charge carriers can be described as massless Dirac fermions, providing scientists with an abundance of new physics 2,3 . Graphene is a unique example of an extremely thin electrical and thermal conductor 4 , with high carrier mobility 5 , and surprising molecular barrier properties 6,7 .Many other 2D materials are known, such as the TMDCs 8,9 , transition metal oxides including titania-and perovskite-based oxides 10,11 , and graphene analogues such as boron nitride (BN) 12,13 . In particular, TMDCs show a wide range of electronic, optical, mechanical, chemical and thermal properties that have been studied by researchers for decades 9,14,15 . There is at present a resurgence of scientific and engineering interest in TMDCs in their atomically thin 2D forms because of recent advances in sample preparation, optical detection, transfer and manipulation of 2D materials, and physical understanding of 2D materials learned from graphene.The 2D exfoliated versions of TMDCs offer properties that are complementary to yet distinct from those in graphene. Graphene displays an exceptionally high carrier mobility exceeding 10 6 cm 2 V -1 s -1 at 2 K (ref. 16) and exceeding 10 5 cm 2 V -1 s -1 at room temperature for devices encapsulated in BN dielectric layers 5 ; because pristine graphene lacks a bandgap, however, fieldeffect transistors (FETs) made from graphene cannot be effectively switched off and have low on/off switching ratios. Bandgaps can be engineered in graphene using nanostructuring [17][18][19] , chemical functionalization 20 and applying a high electric field to bilayer graphene 21 , but these methods add complexity and diminish mobility. In contrast, several 2D TMDCs possess sizable bandgaps around 1-2 eV (refs 9,14), promising interesting new FET and optoelectronic devices.TMDCs are a class of materials with the formula MX 2 , where M is a transition metal element from group IV (Ti, Zr, Hf and so on), group V (for instance V, Nb or Ta) or group VI (Mo, W and so on), and X is a chalcogen (S, Se or Te). These materials form layered structures of the form X-M-X, with the chalcogen atoms in two hexagonal planes separated by a plane of metal atoms, as shown in Fig. 1a. Adjacent layers are weakly held together to form the bulk crystal in a variety of polytypes, which vary in stacking orders and metal atom coordination, as shown in Fig. 1e. The overall symmetry of TMDCs is hexagonal or rhombohedral, and the metal atoms have octahedral or trigonal prismatic coordination. The electronic properties of TMDCs range from metallic to semiconducting, as summarized in Table 1. There are also TMDCs that exhibit exotic behaviours such as charge density waves ...
One sentence summary:We describe a general liquid-phase method to exfoliate layered compounds to give monoand few-layer flakes in large quantities. TMDs consist of hexagonal layers of metal atoms, M, sandwiched between two layers of chalcogen atoms, X, with stoichiometry MX 2 . While the bonding within these tri-layer sheets is covalent, adjacent sheets stack via van der Waals interactions to form a 3D crystal. TMDs occur in more than 40 different types (2, 3) depending on the combination of chalcogen (S, Se or Te) and transition metal(3). Depending on the co-ordination and oxidation state of the metal atoms, TMDs can be metallic, semi-metallic or semiconducting(2, 3), e.g. WS 2 is a semiconductor while NbSe 2 is a metal(3). In addition, superconductivity(4) and charge density wave effects(5) have been observed in some TMDs. This versatility makes them potentially useful in many areas of electronics.However, like graphene(6), layered materials must be exfoliated to fulfil their full potential. For example, films of exfoliated Bi 2 Te 3 should display enhanced thermoelectric efficiency by suppression of thermal conductivity(7). Exfoliation of 2D topological insulators such as Bi 2 Te 3 and Bi 2 Se 3 would reduce residual bulk conductance, 4 highlighting surface effects. In addition, we can expect changes in electronic properties as the number of layers is reduced e.g. the indirect bandgap of bulk MoS 2 becomes direct in few-layer flakes(8). Although exfoliation can be achieved mechanically on a small scale(9, 10), liquid phase exfoliation methods are required for many applications(11).Critically, a simple liquid exfoliation method would allow the formation of novel hybrid and composite materials. While TMDs can be chemically exfoliated in liquids(12-14), this method is time consuming, extremely sensitive to the environment and incompatible with most solvents.We demonstrate exfoliation of bulk TMD crystals in common solvents to give mono-and few layer nano-sheets. This method is insensitive to air and water and can potentially be scaled up to give large quantities of exfoliated material. In addition, we show that this procedure allows the formation of hybrid films with enhanced properties.We initially sonicated commercial MoS 2 , WS 2 and BN (15, 16) powders in a number of solvents with varying surface tensions. The resultant dispersions were centrifuged and the supernatant decanted (Section S3). Optical absorption spectroscopy showed that the amount of material retained (characterised by / A l C α = , where A/l is the absorbance per length, α is the extinction coefficient and C is the concentration) was maximised for solvents with surface tension close to 40 mJ/m 2 (17, 18) ( Fig. 1A-C). Detailed analysis, within the framework of Hansen solubility parameter theory(19), shows successful solvents to be those with dispersive, polar and H-bonding components of the cohesive energy density within certain well-defined ranges (Section S4, Figs. S2-S3). This can be interpreted to mean that successful solvents are those w...
Graphene is at the centre of nanotechnology research. In order to fully exploit its outstanding properties, a mass production method is necessary. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg/ml by dispersion and exfoliation of graphite in organic solvents such as N-methylpyrrolidone. This occurs because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energy matches that of graphene. We confirm the presence of individual graphene sheets with yields of up to 12% by mass, using absorption spectroscopy, transmission electron microscopy and electron diffraction. The absence of defects or oxides is confirmed by X-ray photoelectron, infra-red and Raman spectroscopies. We can produce conductive, semi-transparent films and conductive composites. Solution processing of graphene opens up a whole range of potential large-scale applications from device or sensor fabrication to liquid phase chemistry. Hernandez et al 2Graphene is one of the most exciting nano-materials due to the cascade of unique physical properties that have recently been demonstrated. For example, due to the details of its electronic structure, charge carriers in graphene behave as massless Dirac fermions 1 . Furthermore, novel effects such as an ambipolar field effect 2 , room temperature quantum Hall effect 3 , breakdown of the Born-Oppenheimer approximation 4 are observed. However, as was the case in the early days of nanotube and nanowire research, graphene at present still suffers from one problem, critical for its mass-scale exploitation: it cannot yet be made with high yield. The standard procedure used to make graphene is micromechanical cleavage 5 . This yields the best samples to date, with mobilities up to 200,000 cm 2 /Vs. 6 However, single layers are a negligible fraction amongst large quantities of thin graphite flakes. Furthermore, it is difficult to see how to scale up this process to mass production. Alternatively, growth of graphene is also commonly achieved by annealing SiC substrates, but these samples are in fact composed of a multitude of domains, most of them sub-micrometer, and not spatially uniform in number, or in size over larger length scales 7 . A number of works have also reported graphene growth on metal substrates 8,9 , but this would require the sample transfer to insulating substrates in order to make useful devices, either via mechanical transfer or, via solution processing.Recently, a large number of papers have described the dispersion and exfoliation of graphene oxide (GO) [10][11][12][13] . This material consists of graphene-like sheets, chemically functionalised with compounds such as hydroxyls and epoxides, which stabilise the sheets in water 14 . However, this functionalisation results in considerable disruption of the electronic structure of the graphene. In fact GO is an insulator 15 rather than a semi-metal and is conceptually differen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.