One sentence summary:We describe a general liquid-phase method to exfoliate layered compounds to give monoand few-layer flakes in large quantities. TMDs consist of hexagonal layers of metal atoms, M, sandwiched between two layers of chalcogen atoms, X, with stoichiometry MX 2 . While the bonding within these tri-layer sheets is covalent, adjacent sheets stack via van der Waals interactions to form a 3D crystal. TMDs occur in more than 40 different types (2, 3) depending on the combination of chalcogen (S, Se or Te) and transition metal(3). Depending on the co-ordination and oxidation state of the metal atoms, TMDs can be metallic, semi-metallic or semiconducting(2, 3), e.g. WS 2 is a semiconductor while NbSe 2 is a metal(3). In addition, superconductivity(4) and charge density wave effects(5) have been observed in some TMDs. This versatility makes them potentially useful in many areas of electronics.However, like graphene(6), layered materials must be exfoliated to fulfil their full potential. For example, films of exfoliated Bi 2 Te 3 should display enhanced thermoelectric efficiency by suppression of thermal conductivity(7). Exfoliation of 2D topological insulators such as Bi 2 Te 3 and Bi 2 Se 3 would reduce residual bulk conductance, 4 highlighting surface effects. In addition, we can expect changes in electronic properties as the number of layers is reduced e.g. the indirect bandgap of bulk MoS 2 becomes direct in few-layer flakes(8). Although exfoliation can be achieved mechanically on a small scale(9, 10), liquid phase exfoliation methods are required for many applications(11).Critically, a simple liquid exfoliation method would allow the formation of novel hybrid and composite materials. While TMDs can be chemically exfoliated in liquids(12-14), this method is time consuming, extremely sensitive to the environment and incompatible with most solvents.We demonstrate exfoliation of bulk TMD crystals in common solvents to give mono-and few layer nano-sheets. This method is insensitive to air and water and can potentially be scaled up to give large quantities of exfoliated material. In addition, we show that this procedure allows the formation of hybrid films with enhanced properties.We initially sonicated commercial MoS 2 , WS 2 and BN (15, 16) powders in a number of solvents with varying surface tensions. The resultant dispersions were centrifuged and the supernatant decanted (Section S3). Optical absorption spectroscopy showed that the amount of material retained (characterised by / A l C α = , where A/l is the absorbance per length, α is the extinction coefficient and C is the concentration) was maximised for solvents with surface tension close to 40 mJ/m 2 (17, 18) ( Fig. 1A-C). Detailed analysis, within the framework of Hansen solubility parameter theory(19), shows successful solvents to be those with dispersive, polar and H-bonding components of the cohesive energy density within certain well-defined ranges (Section S4, Figs. S2-S3). This can be interpreted to mean that successful solvents are those w...
Abstract:In order to progress from the lab to commercial applications it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene.Here we show that high-shear mixing of graphite in suitable, stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. XPS and Raman spectroscopy show the exfoliated flakes to be unoxidised and free of basal plane defects. We have developed a simple model which shows exfoliation to occur once the local shear rate exceeds 10 4 s -1 . By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from 100s of ml up to 100s of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals. Main Text:Due to its ultra-thin, 2-dimensional nature and its unprecedented combination of physical properties, graphene has become the most studied of all nano-materials. In the next decade graphene is likely to find commercial applications in many areas from high-frequency electronics to smart coatings.
A method is demonstrated to prepare graphene dispersions at high concentrations, up to 1.2 mg mL(-1), with yields of up to 4 wt% monolayers. This process relies on low-power sonication for long times, up to 460 h. Transmission electron microscopy shows the sonication to reduce the flake size, with flake dimensions scaling as t(-1/2). However, the mean flake length remains above 1 microm for all sonication times studied. Raman spectroscopy shows defects are introduced by the sonication process. However, detailed analysis suggests that predominantly edge, rather than basal-plane, defects are introduced. These dispersions are used to prepare high-quality free-standing graphene films. The dispersions can be heavily diluted by water without sedimentation or aggregation. This method facilitates graphene processing for a range of applications.
Owing to their unique mechanical properties, carbon nanotubes are considered to be ideal candidates for polymer reinforcement. However, a large amount of work must be done in order to realize their full potential. Effective processing of nanotubes and polymers to fabricate new ultra‐strong composite materials is still a great challenge. This Review explores the progress that has already been made in the area of mechanical reinforcement of polymers using carbon nanotubes. First, the mechanical properties of carbon nanotubes and the system requirements to maximize reinforcement are discussed. Then, main methods described in the literature to produce and process polymer–nanotube composites are considered and analyzed. After that, mechanical properties of various nanotube–polymer composites prepared by different techniques are critically analyzed and compared. Finally, remaining problems, the achievements so far, and the research that needs to be done in the future are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.