Moving high bandwidth (10Gb/s+) network switches from the large scale, rack mount design space to the single chip design space requires a re-evaluation of the overall design requirements. In this paper, we explore the design space for these single chip devices by evaluating the ITRS. We find that unlike ten years ago when interconnect was scarce, the limiting factor in today's designs is on-chip memory. We then discuss an architectural technique for maximizing the effectiveness of queue memory in a single chip switch. Next, we show simulation results that indicate that a more than two order of magnitude improvement in dropped packet probability can be achieved by re-distributing memory and allowing sharing between the switch's ports. Finally, we evaluate the cost of the optimized architecture in terms of other on-chip resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.