Silt tailings (slimes) are difficult materials to test in that, like sands, it is extremely difficult to obtain undisturbed samples and subsequently re-establish them in a triaxial cell for element testing in a laboratory in anything approaching their in situ condition. Evaluation of silt tailing behaviour has to depend on in situ tests, and the piezocone (CPTu) in particular. However, CPTs in silt generate substantial excess pore pressure and there is no established methodology to evaluate the measured responses in terms of soil properties, as drained sand-based CPT interpretation is inapplicable. A case history of particularly loose silt tailings is reported in which the National Center for Earthquake Engineering Research (NCEER) liquefaction assessment method would lead to uncertainty in the liquefaction potential. However, the extremely high CPTu excess pore pressure ratio, Bq, and low dimensionless CPT resistance, Qp, at this site indicates liquefaction is likely occurring during pushing of the CPT. Detailed finite element simulations of the CPT using a critical state model provided an effective stress framework to evaluate the in situ state parameter of the silt from the measured CPT data. This framework shows that the group of dimensionless CPT variables Q(1 – Bq) + 1 is fundamental for the evaluation of undrained response during CPT sounding. And, despite the high silt content, the interpretation indicates that the tailings are indeed liquefiable.Key words: liquefaction, CPT, silt, finite element, critical state.
The cone penetration test (CPT) is widely used, and although initially developed as a stratigraphic logging tool its excellent repeatability and accuracy offers a benchmark quantitative test for sand in particular. A continuing difficulty, however, is that the CPT does not measure any soil property directly, so that parameters of interest must be recovered from solution of an inverse boundary value problem, which is difficult. To date most CPT interpretations in sand have been based on very limited calibration testing carried out in large chambers on a few sands from which mappings are developed. But there are differences in the CPT response from one sand to another leaving the interpretation imprecise (and arguably even speculative) because these differences remain poorly understood. In this paper we use the familiar spherical cavity expansion analogy to the CPT including large strains and a good, critical-state-based, soil model to develop a pattern of behaviour which we then compare to some of the reference chamber test data. We find that one of the issues of dispute in the empirical interpretation methods, the so-called stress-level effect, is caused by neglect of elasticity and that there are several additional parameters of first-order significance to cavity expansion in sands. More generally, we show that the difference in CPT response between various chamber sands in predicted. Our results are cast in dimensionless form and the inversion illustrates that extreme care is required in interpreting CPT data if the in situ sand state is to be determined with precision approaching that suggested as achievable by the repeatability of the CPT data itself. Aspects requiring particular care in interpreting CPT data in sand are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.