In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications.
We report that aging in ferroelectric state results in an increase of reverse transition temperature T f in both BaTiO 3 single crystal and Pb 0.84 La 0.16 Ti 0.96 O 3 polycrystal. This indicates that the ferroelectric phase is gradually stabilized during aging below Curie temperature. The evolution of the stabilization with aging time in these two different systems obeys the same kinetic function, but with different relaxation time. This indicates that the stabilization effect of the two systems stems from a common origin. We suggest that the stabilization is due to a short-range ordering of point defects, driven by a symmetry-conforming tendency of point defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.