Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.
Climate change is likely to result in novel conditions with no analogy to current climate. Therefore, the application of species distribution models (SDMs) based on the correlation between observed species’ occurrence and their environment is questionable and calls for a better understanding of the traits that determine species occurrence. Here, we compared two intraspecific, trait‐based SDMs with occurrence‐based SDMs, all developed from European data, and analyzed their transferability to the native range of Douglas‐fir in North America. With data from 50 provenance trials of Douglas‐fir in central Europe multivariate universal response functions (URFs) were developed for two functional traits (dominant tree height and basal area) which are good indicators of growth and vitality under given environmental conditions. These trials included 290 North American provenances of Douglas‐fir. The URFs combine genetic effects i.e. the climate of provenance origin and environmental effects, i.e. the climate of planting locations into an integrated model to predict the respective functional trait from climate data. The URFs were applied as SDMs (URF‐SDMs) by converting growth performances into occurrence. For comparison, an ensemble occurrence‐based SDM was developed and block cross validated with the BIOMOD2 modeling platform utilizing the observed occurrence of Douglas‐fir in Europe. The two trait based SDMs and the occurrence‐based SDM, all calibrated with data from Europe, were applied to predict the known distribution of Douglas‐fir in its introduced and native range in Europe and North America. Both models performed well within their calibration range in Europe, but model transfer to its native range in North America was superior in case of the URF‐SDMs showing similar predictive power as SDMs developed in North America itself. The high transferability of the URF‐SDMs is a testimony of their applicability under novel climatic conditions highlighting the role of intraspecific trait variation for adaptation planning in climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.