Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change.
The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
This paper provides a review of theoretical and practical aspects related to genetic management of forest trees. The implementation of international commitments on forest genetic diversity has been slow and partly neglected. Conservation of forest genetic diversity is still riddled with problems, and complexities of national legal and administrative structures. Europe is an example of a complex region where the distribution ranges of tree species extend across large geographical areas with profound environmental differences, and include many countries. Conservation of forest genetic diversity in Europe has been hampered by lack of common understanding on the management requirements for genetic conservation units of forest trees. The challenge resides in integrating scientific knowledge on conservation genetics into management of tree populations so that recommendations are feasible to implement across different countries. Here, we present pan-European minimum requirements for dynamic conservation units of forest genetic diversity. The units are natural or man-made tree populations which are managed for maintaining evolutionary processes and adaptive potential across generations. Each unit should have a designated status and a management plan, and one or more tree species recognized for as target species for genetic conservation. The minimum sizes of the units are set at 500, 50 or 15 reproducing individuals depending on tree species and conservation objectives. Furthermore, silvicultural interventions should be allowed to enhance genetic processes, as needed, and field inventories carried out to monitor regeneration and the population size. These minimum requirements are now used by 36 countries to improve management of forest genetic diversity.
Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S-locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S-locus. The S-locus revealed a higher diversity (15 alleles) than the eight microsatellites (4-12 alleles). Although the frequency distribution of S-alleles differed significantly from the expected equal distribution, the S-locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S-locus: E = 0.91; for the microsatellites: E = 0.48-0.83). Also, highly significant deviations from neutrality were found for the S-locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S-alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S-locus or on S-linked sites might also affect the distribution and dynamics of S-alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S-locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (sigma(g) = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S-locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.