Rechargeable batteries paired with sodium (Na)-metal anodes are considered as one of the most promising high energy and low-cost energy storage systems. However, the use of highly reactive Na metal and the formation of Na dendrites during battery operation have caused signi cant safety concerns, especially when highly ammable liquid electrolytes are used. Herein, we design and develop a solventfree solid polymer electrolytes (SPEs) based on a per uoropolyether (PFPE) terminated polyethylene glycol (PEG)-based block copolymer for safe and stable all-solid-state Na-metal batteries. Compared with traditional poly(ethylene oxide) (PEO) or PEG SPEs, our results suggest that block copolymer design allows for the formation of self-assembled microstructures leading to high storage modulus at elevated temperatures with the PEG domains providing transport channels even at high salt concentration (EO/Na + = 8:2). Moreover, it is demonstrated that the incorporation of PFPE segments enhances the Na + transference number of the electrolyte to 0.46 at 80 o C. Finally, the proposed SPE exhibits highly stable symmetric cell cycling performance with high current density (0.5 mA cm -2 and 1.0 mAh cm -2 , up to 1300 hours). The assembled all-solid-state Na-metal batteries with Na 3 V 2 (PO 4 ) 3 cathode demonstrate outstanding rate performance, high capacity retention and long-term charge/discharge stability (CE = 99.91%) after more than 900 cycles.
Molecular dynamics (MD) simulations of complex electrochemical systems, such as ionic liquid supercapacitors, are increasingly including the constant potential method (CPM) to model conductive electrodes at specified potential difference, but the inclusion of CPM can be computationally expensive. We demonstrate the computational savings available in CPM MD simulations of ionic liquid supercapacitors when the usual non-periodic slab geometry is replaced with fully periodic boundary conditions. We show how a doubled cell approach, previously used in non-CPM MD simulations of charged interfaces, can be used to enable fully periodic CPM MD simulations. Using either a doubled cell approach, or a finite field approach previously reported by others, fully periodic CPM MD simulations produce comparable results to the traditional slab geometry simulations with a nearly double speed-up in computational time. Indeed, these savings can offset the additional cost of the CPM algorithm, resulting in periodic CPM MD simulations that are computationally competitive with the non-periodic, fixed-charge equivalent simulations for the ionic liquid supercapacitors studied here.
Widely applicable, modified Green−Kubo expressions for the local diffusion coefficient (D l ) are obtained using linear response theory. In contrast to past definitions in use, these expressions are statistical mechanical results. Molecular simulations of systems with anisotropic diffusion and an inhomogeneous density profile confirm the validity of the results. Diffusion coefficients determined from different expressions in terms of currents and velocity correlations agree in the limit of large systems. Furthermore, they apply to arbitrarily small local regions, making them readily applicable to nanoscale and inhomogeneous systems where knowledge of D l is important.
Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19 F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.