The demand for greenhouse gas measurement has increased dramatically due to global warming. A 1.57-μm airborne double-pulse integrated-path differential absorption (IPDA) light detection and ranging (LIDAR) system for CO2 concentration measurement was developed. The airborne field experiments of this IPDA LIDAR system were conducted at a flight altitude of approximately 7 km, and the weak echo signal of the ocean area was successfully received. The matched filter algorithm was applied to the retrieval of the weak signals, and the pulse integration method was used to improve the signal-to-noise ratio. The inversion results of the CO2 column-averaged dry-air mixing ratio (XCO2) by the scheme of averaging after log (AVD) and the scheme of averaging signals before log were compared. The AVD method was found more effective for the experiment. The long-term correlation between the changing trends of XCO2 retrieved by the IPDA LIDAR system and CO2 dry-air volume mixing ratio measured by the in-situ instrument reached 92%. In the steady stage of the open area (30 km away from the coast), which is almost unaffected by the residential areas, the mean value of XCO2 retrieved by the IPDA LIDAR system was 414.69 ppm, with the standard deviation being 1.02 ppm. Compared with the CO2 concentration measured by the in-situ instrument in the same period, bias was 1.30 ppm. The flight path passed across the ocean, residential, and mountainous areas, with the mean value of XCO2 of the three areas being 419.35, 429.29, and 422.52 ppm, respectively. The gradient of the residential and ocean areas was 9.94 ppm, with that of the residential and mountainous areas being 6.77 ppm. Obvious gradients were found in different regions.
A ground-based double-pulse integrated path differential absorption (IPDA) instrument for carbon dioxide (CO) concentration measurements at 1572 nm has been developed. A ground experiment was implemented under different conditions with a known wall located about 1.17 km away acting as the scattering hard target. Off-/offline testing of a laser transmitter was conducted to estimate the instrument systematic and random errors. Results showed a differential absorption optical depth (DAOD) offset of 0.0046 existing in the instrument. On-/offline testing was done to achieve the actual DAOD resulting from the CO absorption. With 18 s pulses average, it demonstrated that a CO concentration measurement of 432.71±2.42 ppm with 0.56% uncertainty was achieved. The IPDA ranging led to a measurement uncertainty of 1.5 m.
The influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar (HSRL) is experimentally investigated and theoretically evaluated. The measurements analyzed in this study were made during three field campaigns by the German Aerospace Center airborne HSRL. The influence of the respective theoretical model on spaceborne HSRL retrievals is also estimated. Generally, the influence on aerosol extinction coefficient can be neglected for both airborne and spaceborne HSRLs. However, the influence on aerosol backscatter coefficient depends on aerosol concentration and is larger than 3% (6%) at ground level for airborne (spaceborne) HSRLs, which is considerable for the spaceborne HSRL, especially when the aerosol concentration is low. A comparison of the HSRL measurements and coordinated ground-based sunphotometer measurements shows that the influence of the model is observable and comparable to the measurement error of the lidar system.
This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.