This paper briefly discusses the mobile ground-based incoherent Doppler wind lidar system, with iodine filters as receiving frequency discriminators, developed by the Ocean Remote Sensing Laboratory, Ocean University of Qingdao, China. The presented result of wind profiles in October and November 2000, retrieved from the combined Mie and Rayleigh backscattering, is the first report to our knowledge of wind measurements in the troposphere by such a system, where the required independent measurement of aerosol-scattering ratio can also be performed. A second iodine vapor filter was used to lock the laser to absolute frequency reference for both wind and aerosol-scattering ratio measurements. Intercomparison experiments of the lidar wind profile measurements were performed with pilot balloons. Results showed that the standard deviation of wind speed and wind direction, for the 2-4 km altitude range, were 0.985 m/s and 17.9 degrees, respectively.
Abstract. After the successful launch of Aeolus, which is the first spaceborne wind lidar developed by the European Space Agency (ESA), on 22 August 2018, we deployed several ground-based coherent Doppler wind lidars (CDLs) to verify the wind observations from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations over China, the Rayleigh-clear and Mie-cloudy horizontal-line-of-sight (HLOS) wind velocities from Aeolus in the atmospheric boundary layer and the lower troposphere are compared with those from CDLs. To ensure the quality of the measurement data from CDLs and Aeolus, strict quality controls are applied in this study. Overall, 52 simultaneous Mie-cloudy comparison pairs and 387 Rayleigh-clear comparison pairs from this campaign are acquired. All of the Aeolus-produced Level 2B (L2B) Mie-cloudy HLOS wind and Rayleigh-clear HLOS wind and CDL-produced HLOS wind are compared individually. For the inter-comparison result of Mie-cloudy HLOS wind and CDL-produced HLOS wind, the correlation coefficient, the standard deviation, the scaled mean absolute deviation (MAD) and the bias are 0.83, 3.15 m s−1, 2.64 m s−1 and −0.25 m s−1, respectively, while the y=ax slope, the y=ax+b slope and the y=ax+b intercept are 0.93, 0.92 and −0.33 m s−1. For the Rayleigh-clear HLOS wind, the correlation coefficient, the standard deviation, the scaled MAD and the bias are 0.62, 7.07 m s−1, 5.77 m s−1 and −1.15 m s−1, respectively, while the y=ax slope, the y=ax+b slope and the y=ax+b intercept are 1.00, 0.96 and −1.2 m s−1. It is found that the standard deviation, the scaled MAD and the bias on ascending tracks are lower than those on descending tracks. Moreover, to evaluate the accuracy of Aeolus HLOS wind measurements under different product baselines, the Aeolus L2B Mie-cloudy HLOS wind data and L2B Rayleigh-clear HLOS wind data under Baselines 07 and 08, Baselines 09 and 10, and Baseline 11 are compared against the CDL-retrieved HLOS wind data separately. From the comparison results, marked misfits between the wind data from Aeolus Baselines 07 and 08 and wind data from CDLs in the atmospheric boundary layer and the lower troposphere are found. With the continuous calibration and validation and product processor updates, the performances of Aeolus wind measurements under Baselines 09 and 10 and Baseline 11 are improved significantly. Considering the influence of turbulence and convection in the atmospheric boundary layers and the lower troposphere, higher values for the vertical velocity are common in this region. Hence, as a special note, the vertical velocity could impact the HLOS wind velocity retrieval from Aeolus.
Atmospheric boundary layer height (ABLH) was observed by the CHM15k ceilometer (January 2008 to October 2013) and the PollyXT lidar (July 2013 to December 2018) over the European Aerosol Research LIdar NETwork to Establish an Aerosol Climatology (EARLINET) site at the Remote Sensing Laboratory (RS-Lab) in Warsaw, Poland. Out of a maximum number of 4017 observational days within this period, a subset of quasi-continuous measurements conducted with these instruments at the same wavelength (1064 nm) was carefully chosen. This provided a data sample of 1841 diurnal cycle ABLH observations. The ABLHs were derived from ceilometer and lidar signals using the wavelet covariance transform method (WCT), gradient method (GDT), and standard deviation method (STD). For comparisons, the rawinsondes of the World Meteorological Organization (WMO 12374 site in Legionowo, 25 km distance to the RS-Lab) were used. The ABLHs derived from rawinsondes by the skew-T-log-p method and the bulk Richardson (bulk-Ri) method had a linear correlation coefficient (R2) of 0.9 and standard deviation (SD) of 0.32 km. A comparison of the ABLHs obtained for different methods and instruments indicated a relatively good agreement. The ABLHs estimated from the rawinsondes with the bulk-Ri method had the highest correlations, R2 of 0.80 and 0.70 with the ABLHs determined using the WCT method on ceilometer and lidar signals, respectively. The three methods applied to the simultaneous, collocated lidar, and ceilometer observations (July to October 2013) showed good agreement, especially for the WCT method (R2 of 0.94, SD of 0.19 km). A scaling threshold-based algorithm was proposed to homogenize ceilometer and lidar datasets, which were applied on the lidar data, and significantly improved the coherence of the results (R2 of 0.98, SD of 0.11 km). The difference of ABLH between clear-sky and cloudy conditions was on average below 230 m for the ceilometer and below 70 m for the lidar retrievals. The statistical analysis of the long-term observations indicated that the monthly mean ABLHs varied throughout the year between 0.6 and 1.8 km. The seasonal mean ABLH was of 1.16 ± 0.16 km in spring, 1.34 ± 0.15 km in summer, 0.99 ± 0.11 km in autumn, and 0.73 ± 0.08 km in winter. In spring and summer, the daytime and nighttime ABLHs appeared mainly in a frequency distribution range of 0.6 to 1.0 km. In winter, the distribution was common between 0.2 and 0.6 km. In autumn, it was relatively balanced between 0.2 and 1.2 km. The annual mean ABLHs maintained between 0.77 and 1.16 km, whereby the mean heights of the well-mixed, residual, and nocturnal layer were 1.14 ± 0.11, 1.27 ± 0.09, and 0.71 ± 0.06 km, respectively (for clear-sky conditions). For the whole observation period, the ABLHs below 1 km constituted more than 60% of the retrievals. A strong seasonal change of the monthly mean ABLH diurnal cycle was evident; a mild weakly defined autumn diurnal cycle, followed by a somewhat flat winter diurnal cycle, then a sharp transition to a spring diurnal cycle, and a high bell-like summer diurnal cycle. A prolonged summertime was manifested by the September cycle being more similar to the summer than autumn cycles.
Abstract.A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic LIDAR, operating at 1064 nm. In addition, PM 10 concentrations of particles, NO x concentrations and meteorological data were continuously monitored within the LIDAR scanning region. Based on the data we collected, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and found an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased LIDAR returns, which are associated with the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily plateau at around 17:00 Central European Time. We also found that horizontal atmospheric extinction at the height of 200 m, averaged in limited region with a radius of 300 m directly above the ground-based measuring site, was linearly correlated to the PM 10 concentration with a correlation coefficient of 0.84. When considering the average of the horizontal atmospheric extinction over the entire scanning region, a strong dependence on traffic conditions (concentration of NO x ) in the vicinity of the ground-based measuring site was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.