The effect of the top electrode interface on the hysteretic behavior of epitaxial ferroelectric Pb(Zr,Ti)O3 thin films with bottom SrRuO3 electrode J. Appl. Phys. 112, 064116 (2012) Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry Appl. Phys. Lett. 101, 131601 (2012) Applications of pulsed laser ablation for enhanced gold nanofluids J. Appl. Phys. 112, 063113 (2012) Growth processes of lithium titanate thin films deposited by using pulsed laser deposition This paper presents a review on the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals. The ablation of a target is the key process that determines the amount of material to be deposited; while, the plasma expansion governs the characteristics of the deposited material. The modeling of ablation process involves a study of two complex phenomena: ͑i͒ laser-target interaction and ͑ii͒ plasma formation and subsequent shielding of the incoming radiation. The laser-target interaction is a function of pulse duration, which is captured by various models that are described in this paper. The plasma produced as a result of laser-target interaction, further interacts with the incoming radiation, causing the shielding of the target. The shielding process has been modeled by considering the various photon absorption mechanisms operative inside the plasma, namely: inverse Bremsstrahlung, photoionization, and Mie absorption. Concurrently, the plasma expands freely until the ablated material gets deposited on the substrate. Various models describing the plasma expansion process have been presented. The ability of the theoretical models in predicting various ablation and plasma characteristics has also been compared with the relevant experimental data from the literature. The paper concludes with identification of critical issues and recommendations for future modeling endeavors.
Microchannels formed in non-conductive substrates like fused silica, glass and quartz, etc, have wide applications in the field of micro-fluidic and lab-on-chip applications due to their optical transparency, chemical inertness, and biocompatible nature. Electrochemical discharge machining (ECDM) has emerged as a potential low-cost fabrication method to fabricate microfeatures in these materials, compared to conventional laser etching techniques. In this paper, numerical simulation and experimental fabrication of microchannels in a glass substrate using the ECDM based micromilling technique is demonstrated. Stainless steel needle as tool electrode is used in alkaline electrolyte medium. The effects of process parameters viz. tool feed rate, pulse frequency and machining voltage on material removal rate (MRR) and surface roughness (SR) of the microchannels were analysed. The experimental results showed that the MRR and SR increases with an increase in machining voltage and tool feed rate but reduces with an increase in the pulse frequency. Simulations using FEM-based model showed similar trends in MRR with that of experiments. A comparison between the cross-section profiles obtained by the experimental work and predicted profile by the numerical simulation showed some deviation between them due to the Gaussian heat flux assumption in the numerical model. Optical images showed that KOH performance is comparatively better than NaOH with respect to thermal damage and width of cut. Further, multi-objective optimization was performed using utility theory coupled with Taguchi’s method to optimize the process parameters. Moreover, the capability of the ECDM process was demonstrated in fabricating various other micro-features such as sinusoidal channel, letter engraving, etc in a glass substrate, which can be extended to other brittle materials like quartz, fused silica, ceramic, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.