This paper focuses on a simple, yet fundamental question: "Can a node infer the wireless channels on one frequency band by observing the channels on a different frequency band?" This question arises in cellular networks, where the uplink and the downlink operate on different frequencies. Addressing this question is critical for the deployment of key 5G solutions such as massive MIMO, multi-user MIMO, and distributed MIMO, which require channel state information.We introduce R2-F2, a system that enables LTE base stations to infer the downlink channels to a client by observing the uplink channels from that client. By doing so, R2-F2 extends the concept of reciprocity to LTE cellular networks, where downlink and uplink transmissions occur on different frequency bands. It also removes a major hurdle for the deployment of 5G MIMO solutions. We have implemented R2-F2 in software radios and integrated it within the LTE OFDM physical layer. Our results show that the channels computed by R2-F2 deliver accurate MIMO beamforming (to within 0.7 dB of beamforming gains with ground truth channels) while eliminating channel feedback overhead.
Location services, fundamentally, rely on two components: a mapping system and a positioning system. The mapping system provides the physical map of the space, and the positioning system identifies the position within the map. Outdoor location services have thrived over the last couple of decades because of well-established platforms for both these components (e.g. Google Maps for mapping, and GPS for positioning). In contrast, indoor location services haven't caught up because of the lack of reliable mapping and positioning frameworks. Wi-Fi positioning lacks maps and is also prone to environmental errors. In this paper, we present DLoc, a Deep Learning based wireless localization algorithm that can overcome traditional limitations of RF-based localization approaches (like multipath, occlusions, etc.). We augment DLoc with an automated mapping platform, MapFind. MapFind constructs location-tagged maps of the environment and generates training data for DLoc. Together, they allow off-the-shelf Wi-Fi devices like smartphones to access a map of the environment and to estimate their position with respect to that map. During our evaluation, MapFind has collected location estimates of over 105 thousand points under 8 different scenarios with varying furniture positions and people motion across two different spaces covering 2000 sq. Ft. DLoc outperforms stateof-the-art methods in Wi-Fi-based localization by 80% (median & 90 th percentile) across the two different spaces. CCS CONCEPTS • Networks → Location based services; • Computing methodologies → Robotic planning; Supervised learning; • Information systems → Sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.