This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.
This work studies the phase separations between polymers and a small molecule in a common aqueous solution that do not have well-defined hydrophobic-hydrophilic separation. In addition to poly(acrylamide) (PAAm) and poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP) also promotes liquid crystal (LC) droplet formation by disodium cromoglycate (5'DSCG) solvated in water. In the presence of these polymers, the concentration of 5'DSCG needed for forming LC droplets is substantially lower than that needed for forming an LC phase by 5'DSCG alone. To define the concentration ranges that 5'DSCG molecules form liquid crystals (either as droplets or as an isotropic-LC mixture), we constructed ternary phase diagrams for 5'DSCG, water, and a polymer - PVA, PVP, or PAAm. We discovered that PAAm with high molecular weight promotes LC droplet formation by 5'DSCG more effectively than PAAm with low molecular weight. At the same weight percentage, long-chain PAAm can cause 5'DSCG to form LC droplets in water, whereas short-chain PAAm does not. Poly(vinyl pyrrolidone) (PVP), which has functional groups that are more dissimilar to 5'DSCG than PVA and PAAm, promotes LC droplet formation by 5'DSCG more effectively than either of the other two polymers. Additionally, small angle neutron scattering data revealed that the assembly structure of 5'DSCG promoted by the presence of PVA is similar to the thread structure formed by 5'DSCG alone. Together, these results reveal how noncovalent polymerization can be promoted by mixing thermodynamically incompatible molecules and elucidate the basic knowledge of nonamphiphilic colloidal science.
This work describes the different durations of surface confinement of adhered mammalian cells by monolayers comprised of enantiomers of bio-inert polyol-terminated alkanethiols. Enhanced resistance to protein adsorption and cell adhesion is obtained on monolayers formed by a racemic mixture of the enantiomeric alkanethiols.
This work describes a general approach for preventing protein aggregation and surface adsorption by modifying proteins with β-cyclodextrins (βCD) via an efficient water-driven ligation. As compared to native unmodified proteins, the cyclodextrin-modified proteins (lysozyme and RNase A) exhibit significant reduction in aggregation, surface adsorption and increase in thermal stability. These results reveal a new chemistry for preventing protein aggregation and surface adsorption that is likely of different mechanisms than that by modifying proteins with poly(ethylene glycol).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.