Abstract-Accurate lung tumor delineation plays an important role in radiotherapy treatment planning. Since the lung tumor has poor boundary in PET images and low contrast in CT images, segmentation of tumor in PET and CT images is a challenging task. In this study, we effectively integrate the two modalities by making fully use of the superior contrast of PET images and superior spatial resolution of CT images. Random walk and graph cut method are integrated to solve the segmentation problem, in which random walk is utilized as an initialization tool to provide object seeds for graph cut segmentation on PET and CT images. The co-segmentation problem is formulated as an energy minimization problem which is solved by max-flow/min-cut method. A graph includes two sub-graphs and a special link is constructed, in which one sub-graph is for PET and another is for CT, and the special link encodes a context term which penalizes the difference of the tumor segmentation on the two modalities. To fully utilize the characteristics of PET and CT images, a novel energy representation is devised. For PET, a downhill cost and a 3D derivative cost is proposed. For CT, a shape penalty cost is integrated into the region and boundary function which helps constrain the tumor location during the segmentation. We validate our algorithm on a dataset which consists of 18 PET-CT images. The experimental results indicate the proposed method is superior to the graph cut method solely using the PET or CT is more accurate compared with the random walk method, random walk co-segmentation method, and non-improved graph-cut method.Index Terms-Image segmentation, interactive segmentation, graph cut, random walks, prior information, lung tumor, positron emission tomography (PET), computed tomography (CT).
Liver segmentation is still a challenging task in medical image processing area due to the complexity of the liver's anatomy, low contrast with adjacent organs, and presence of pathologies. This investigation was used to develop and validate an automated method to segment livers in CT images. The proposed framework consists of three steps: 1) preprocessing; 2) initialization; and 3) segmentation. In the first step, a statistical shape model is constructed based on the principal component analysis and the input image is smoothed using curvature anisotropic diffusion filtering. In the second step, the mean shape model is moved using thresholding and Euclidean distance transformation to obtain a coarse position in a test image, and then the initial mesh is locally and iteratively deformed to the coarse boundary, which is constrained to stay close to a subspace of shapes describing the anatomical variability. Finally, in order to accurately detect the liver surface, deformable graph cut was proposed, which effectively integrates the properties and inter-relationship of the input images and initialized surface. The proposed method was evaluated on 50 CT scan images, which are publicly available in two databases Sliver07 and 3Dircadb. The experimental results showed that the proposed method was effective and accurate for detection of the liver surface.
Automated retinal layer segmentation of optical coherence tomography (OCT) images has been successful for normal eyes but becomes challenging for eyes with retinal diseases if the retinal morphology experiences critical changes. We propose a method to automatically segment the retinal layers in 3-D OCT data with serous retinal pigment epithelial detachments (PED), which is a prominent feature of many chorioretinal disease processes. The proposed framework consists of the following steps: fast denoising and B-scan alignment, multi-resolution graph search based surface detection, PED region detection and surface correction above the PED region. The proposed technique was evaluated on a dataset with OCT images from 20 subjects diagnosed with PED. The experimental results showed the following. 1) The overall mean unsigned border positioning error for layer segmentation is 7.87±3.36 μm , and is comparable to the mean inter-observer variability ( 7.81±2.56 μm). 2) The true positive volume fraction (TPVF), false positive volume fraction (FPVF) and positive predicative value (PPV) for PED volume segmentation are 87.1%, 0.37%, and 81.2%, respectively. 3) The average running time is 220 s for OCT data of 512 × 64 × 480 voxels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.