Although exercise-induced oxidative stress receives considerable scientific attention, there is still little information available regarding exercise-induced adaptations of the antioxidant defence system in adolescent and child athletes. The aim of our study was to establish the effects of long-term exercise training on the redox state of adolescents, and to find correlations between elements of redox homeostasis and aerobic power. Thirty-three handball players and 14 non-athletes, 16-19-years old, were subjected to blood sampling to measure levels of nitric oxide (NO; estimated through nitrites (NO₂⁻), superoxide anion radical (O₂⁻), hydrogen peroxide (H₂O₂), lipid peroxidation (estimated through TBARS), superoxide dismutase (SOD) and catalase (CAT). Subjects were also subjected to maximal progressive exercise test to estimate their maximal oxygen consumption (VO₂max). Athletes had significantly (P < 0.05) higher SOD activity and lower CAT activity compared with non-athletes (SOD: 2175.52 ± 362.07 compared with 1172.16 ± 747.40 U/g of hemoglobin x 10³, and CAT: 2.19 ± 0.31 compared with 3.08 ± 0.47 U/g of hemoglobin x 10³). These differences were the most obvious when comparing non-athletes and athletes with poor/average aerobic power. H₂O₂ and TBARS levels differed among subjects with poor, average or good aerobic power (P < 0.01, and P < 0.05, respectively). Sports engagement and aerobic capacity are important factors in inducing changes in redox status.
Abstract. The aims of our study were to assess the redox state of adolescent athletes and non-athletes both at rest and after acute exposure to physical load and to find relations between parameters of redox state and morphofunctional characteristics of subjects. 58 young handball players and 37 non-athletes were subjected to body composition analysis, measuring of maximal oxygen consumption and blood sampling immediately before and after a maximal progressive exercise test. At rest, athletes had significantly higher superoxide dismutase (SOD) and catalase (CAT) activity, higher levels of reduced glutathione (GSH) and nitric oxide (NO) and lower levels of lipid peroxidation (TBARS) compared with non-athletes. A maximal exercise test induced statistically significant rise of superoxide anion radical (O 2 -), hydrogen peroxide (H 2 O 2 ) and NO levels in non-athletes, while TBARS levels decreased. Athletes experienced the fall in NO levels and the fall in CAT activity. After exercise, athletes had significantly lower levels of O 2 -compared with non-athletes. Two way repeated measures ANOVA showed that the response of O 2 -, NO and TBARS to the exercise test was dependent on the sports engagement (training experience) of subjects. Significant correlations between morphofunctional and redox parameters were found. These results suggest that physical fitness affects redox homeostasis.
Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO(2) (-)), superoxide anion radical (O(2) (•-)), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O(2) (•-) in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O(2) (•-), nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.
The purpose of this study was to assess the influence of sport-specific and nonspecific bouts of exercise on athletes' redox state. Blood samples were collected from 14 handball players immediately before and after graded exercise test on the cycle ergometer and handball training. Levels of superoxide anion radical (O2−), hydrogen peroxide (H2O2), nitrites (NO2−) as markers of nitric oxide, index of lipid peroxidation (TBARs), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity were determined. Exercise intensity was assessed by a system for heart rate (HR) monitoring. Average athletes' HR was not significantly different between protocols, but protocols differed in total time and time and percentage of time that athletes spent in every HR zone. The laboratory exercise test induced a significant increase of H2O2 and TBARs as well as the decrease of the SOD and CAT activity, while after specific handball training, levels of NO2− were increased and SOD activity decreased. It seems that unaccustomed short intensive physical activity may induce oxidative stress in trained athletes, while sport-specific activity of longer duration and proper warm-up period may not. Further research should show whether the change of protocol testing and the implementation of various supplementations and manual methods can affect the redox equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.