These results suggest that the PL and OFC regions form part of the circuitry mediating the effects of foot shock stress on reinstatement of drug seeking and that the PL region may be a common pathway for cue, drug and foot-shock stress-induced reinstatement of drug seeking.
Experiments in our laboratory have shown that central noradrenergic (NA) activation plays a major role in stress-induced reinstatement of drug seeking in rats. In the present experiments, we investigated the effects of blockade of beta-NA adrenoceptors in the bed nucleus of the stria terminalis (BNST) and in the region of the central nucleus of the amygdala (CeA) on footshock- and cocaine-induced reinstatement. Rats were trained to self-administer cocaine (0.5 mg/kg, i.v.) for 9 d and, after a 5-7 d drug-free period, were given extinction sessions followed by a test for footshock stress-induced (15 min of intermittent footshock, 0.8 mA) or cocaine-induced (20 mg/kg, i.p.) reinstatement. Before the test, different groups of rats were given bilateral infusions of one of four doses of a mixture of the beta(1)- and beta(2)-receptor antagonists betaxolol and ICI-118,551 (vehicle, 0.25, 0.5, and 1 nmol of each compound in 0.5 microliter) into either the BNST or CeA. We observed a dose-dependent reduction of stress-induced reinstatement after infusions into the BNST and a complete blockade of stress-induced reinstatement after infusions into the CeA at all doses tested. The same treatments did not block cocaine-induced reinstatement when given at either site. These data suggest that stress-induced NA activation in the BNST and in the region of the CeA is critical to relapse to drug seeking induced by stress but not to relapse induced by priming injections of cocaine, and we hypothesize that NA activity leads to activation of corticotropin-releasing factor neurons in these regions.
Netrins are guidance cues that play a fundamental role in organizing the developing brain. The netrin receptor, DCC (deleted in colorectal cancer), is highly expressed by dopaminergic (DA) neurons. DCC may therefore participate in the organization of DA circuitry during development and also influence DA function in the adult. Here we show that adult dcc heterozygous mice exhibit a blunted behavioral response to the indirect DA agonist amphetamine and do not develop sensitization to its effects when treated repeatedly. These behavioral alterations are associated with profound changes in DA function. In the medial prefrontal cortex, dcc heterozygotes exhibit increased tyrosine hydroxylase (TH) protein levels and dramatic increases in basal concentrations of DA and DA metabolites. In contrast, in the nucleus accumbens, dcc heterozygotes show no changes in either TH or DA levels, but exhibit decreased concentrations of DA metabolites, suggesting reduced DA activity. In addition, dcc heterozygous mice exhibit a small, but significant reduction in total number of TH-positive neurons in midbrain DA cell body regions. These results demonstrate for the first time that alterations in dcc expression lead to selective changes in DA function and, in turn, to differences in DA-related behaviors in adulthood. These findings raise the possibility that changes in dcc function early in life are implicated in the development of DA dysregulation observed in certain psychiatric disorders, such as schizophrenia, or following chronic use of drugs of abuse. Keywords: axon guidance; DCC; prefrontal cortex; schizophrenia; drug abuse; psychostimulant drugs Repeated exposure to stimulant drugs, such as amphetamine, leads to the development of increased sensitivity to the behavioral-activating effects of these drugs. This phenomenon, known as behavioral sensitization, is long-lasting and is accompanied by enhanced stimulant-induced dopamine (DA) release in the nucleus accumbens (NAcc). 1,2 Individual differences in susceptibility to the effects of stimulants on behavior and on the release of DA have been demonstrated in both humans and adult laboratory animals. [3][4][5][6][7][8] Although the processes that lead to differences in vulnerability to stimulant drugs remain to be elucidated, evidence indicates that both genetic factors 9 and exposure to environmental insults early in life are involved. 10 Perinatal insults can result in sensitized behavioral and mesolimbic DA responses of adult rats to an acute injection of amphetamine. 11 Similarly, lesions of forebrain structures made in neonatal rats lead to enhanced behavioral responses to amphetamine in adult animals. 5,12 These findings suggest that anomalies in the development and organization of DA circuitry contribute to subsequent functional and behavioral abnormalities in the adult. However, little is known about the molecular mechanisms that regulate the development of DA systems.Netrins are a family of secreted proteins that play a fundamental role in the organization of the develop...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.