The manufacturing of Unmanned Aerial Vehicles (UAV) requires a design process that involves the design of aircraft’s components such as fuselage, wing, horizontal stabilizer, vertical stabilizer, ailerons, elevators, tail, and wing. The process takes a long time. Therefore, the distribution of structural works based on their characteristics and classifications by considering their design attributes and manufacturing processes is required. This research aims to find the optimal time and critical path of the assembly process of an UAV based on product work breakdown structure (PWBS) and critical path method (CPM). The result reveals that the optimal assembly time is 139 minutes. Finally, the application of product-oriented structural work distribution and the optimization of the assembly activities involved in the critical path successfully minimize the duration of the assembly process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.