Salvia miltiorrhiza (SM) is widely used to treat microcirculatory disturbance-related diseases; its lipophilic components play important roles in this application. Cryptotanshinone (CTS), tanshinone I (TSI) and tanshinone IIA (TSA) are the most widely-studied lipophilic ingredients, but low oral bioavailability limits their clinical application. It has been proven that micronization could improve the bioavailability of some drugs, so we’ve conducted this randomized study to investigate whether micronized granular powder (GP) of SM could improve the bioavailability of tanshinones compared with traditional decoction (TD). An oral dose of TD or GP of SM was administrated to subjects and blood samples were collected at predetermined time points. The plasma concentrations of tanshinones were detected by a validated method and pharmacokinetic parameters were calculated using a non-compartmental model. GP of SM resulted in a significant increase in mean maximum plasma concentration (C
max), elimination half-life and area under concentration-time curve (AUC) of tanshinones, with the plasma AUC of CTS, TSI and TSA in GP 5–184, 4–619 and 5–130 times higher than TD. In addition, the individual variances of C
max and AUC were much lower after GP administration. Summarily, tanshinones in micronized GP of SM had higher oral bioavailability and lower individual variances, thus we speculate that it may indicate a better clinical efficacy and be a better choice than current treatments.
Although Aurantii Fructus (AF) and Aurantii Fructus Immaturus (AFI) are both the fruits of the same rutaceae plant at different stages of growth, they exert similar yet distinct clinical effects. The chemical composition is crucial for quality control as well as therapeutic application. To address this concern, it is significant to evaluate the similarities and differences of the constituents in both AF and AFI. The extract of AF and AFI were comprehensively analyzed by ultra fast liquid chromatography-photodiode array detector-triple-time of flight-tandem mass spectrometry (UFLC-DAD-Triple TOF-MS/MS). Among the 40 compounds detected, 19 metabolites were detected in both the AF and AFI; whereas 13 compounds were only detected in AF and five constituents were exclusively detected in AFI. In particular, even in AFI, three compounds were only identified in AFI (Citrus aurantium’ L. and its cultivar). Among the 18 compounds confirmed by standard database, 13 compounds were reported in AF and AFI for the first time. Furthermore, the distinction was also revealed by the content of naringin, hesperidin, neohesperidin, and synephrine. The study directly contributed to the similarities and differences of AF and AFI. Herein, similarities and the differences in chemical profiles of AF and AFI could explain the current clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.