Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.
Abstract. Variability is a central issue in deep submicron technologies, in which it becomes increasingly difficult to produce two chips with the same behavior. While the impact of variability is well understood from the microelectronic point of view, very few works investigated its significance for cryptographic implementations. This is an important concern as 65-nanometer and smaller technologies are soon going to equip an increasing number of security-enabled devices. Based on measurements performed on 20 prototype chips of an AES S-box, this paper provides the first comprehensive treatment of variability issues for side-channel attacks. We show that technology scaling implies important changes in terms of physical security. First, common leakage models (e.g. based on the Hamming weight of the manipulated data) are no longer valid as the size of transistors shrinks, even for standard CMOS circuits. This impacts both the evaluation of hardware countermeasures and formal works assuming that independent computations lead to independent leakage. Second, we discuss the consequences of variability for profiled side-channel attacks. We study the extend to which a leakage model that is carefully profiled for one device can lead to successful attacks against another device. We also define the perceived information to quantify this context, which generalizes the notion of mutual information with possibly degraded leakage models. Our results exhibit that existing side-channel attacks are not perfectly suited to this new context. They constitute an important step in better understanding the challenges raised by future technologies for the theory and practice of leakage resilient cryptography.
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance–voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm−2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm−2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.