BackgroundExcessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions.ResultsUnder control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles.ConclusionsPlants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline conditions. The localization of QTL for these traits and the identification of lines with specific antioxidant and growth responses may be useful for breeding potentially salt tolerant tomato cultivars having higher antioxidant levels under nonstress and salt stress conditions.
IntroductionLentil, which belongs to the family Leguminosae (Fabaceae), is an important food source for people around the world (Fikiru et al., 2007). Lentil represents the greatest source of protein after soybeans and hemp (Callaway, 2004). In addition to its nutritional importance, this crop plays a role in the fixation of nitrogen from the atmosphere and the formation of nitrogen in the soil, which replenishes nutrients and maintains soil productivity (Wong, 1980). Lentils are drought-tolerant (Karim Mojein et al., 2003) and are grown in many areas around the world. Geographically, this crop is widely cultivated in West Asia and the Indian subcontinent, North Africa, South Europe, South and North America, and Australia (Erskine, 1997). The major lentil-producing regions of the world are Asia and the West Asia/North Africa region (Erskine et al., 1998), and lentil is currently under cultivation in more than 35 countries (Yadav et al., 2007). Yadav et al. (2007) also reported that 99% of the world's lentil production is provided by 20 countries, with the most important lentilproducing countries being Australia, Canada,
The growth and ion content of salt sensitive Lycopersicon esculentum Mill. cv. M82 and salt tolerant L. pennellii Correll accession LA716 were examined under both control and stress conditions (150 mM NaCl). L. esculentum grew more vigorously than L. pennellii under optimal conditions, however, L. pennellii was able to maintain its growth better than cultivated tomato when the plants were exposed to salinity. Sodium content of both L. esculentum and L. pennellii increased as a result of NaCl stress. In addition, both species showed reduced potassium and calcium content due to salinity. The physiological traits were also measured in a population of 52 L. pennellii introgression lines grown under both normal and stress conditions. A total of 311 quantitative trait loci (QTL) were identified for the studied traits: plant height, stem diameter, leaf number, leaf and root fresh and dry mass, and sodium, potassium and calcium contents. Some of the loci (124) were identified under both control and stress conditions while 86 QTL were identified only under non-stress conditions and 101 loci were identified only under NaCl stress.
Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T → M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T → M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.
The growth and ion content of salt sensitive Lycopersicon esculentum Mill. cv. M82 and salt tolerant L. pennellii Correll accession LA716 were examined under both control and stress conditions (150 mM NaCl). L. esculentum grew more vigorously than L. pennellii under optimal conditions, however, L. pennellii was able to maintain its growth better than cultivated tomato when the plants were exposed to salinity. Sodium content of both L. esculentum and L. pennellii increased as a result of NaCl stress. In addition, both species showed reduced potassium and calcium content due to salinity. The physiological traits were also measured in a population of 52 L. pennellii introgression lines grown under both normal and stress conditions. A total of 311 quantitative trait loci (QTL) were identified for the studied traits: plant height, stem diameter, leaf number, leaf and root fresh and dry mass, and sodium, potassium and calcium contents. Some of the loci (124) were identified under both control and stress conditions while 86 QTL were identified only under non-stress conditions and 101 loci were identified only under NaCl stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.