We present a system, FLOG (Flexible Ligands Oriented on Grid), that searches a database of 3D coordinates to find molecules complementary to a macromolecular receptor of known 3D structure. The philosophy of FLOG is similar to that reported for DOCK [Shoichet, B.K. et al., J. Comput. Chem., 13 (1992) 380]. In common with that system, we use a match center representation of the volume of the binding cavity and we use a clique-finding algorithm to generate trial orientations of each candidate ligand in the binding site. Also we use a grid representation of the receptor to assess the fit of each orientation. We have introduced a number of novel features within this paradigm. First, we address ligand flexibility by including up to 25 explicit conformations of each structure in our databases. Nonhydrogen atoms in each database entry are assigned one of seven atom types (anion, cation, donor, acceptor, polar, hydrophobic and other) based on their local bonded chemical environments. Second, we have devised a new grid-based scoring function compatible with this 'heavy atom' representation of the ligands. This includes several potentials (electrostatic, hydrogen bonding, hydrophobic and van der Waals) calculated from the location of the receptor atoms. Third, we have improved the fitting stage of the search. Initial dockings are generated with a more efficient clique-finding algorithm. This new algorithm includes the concept of 'essential points', match centers that must be paired with a ligand atom. Also, we introduce the use of a rapid simplex-based rigid-body optimizer to refine the orientations. We demonstrate, using dihydrofolate reductase as a sample receptor, that the FLOG system can select known inhibitors from a large database of drug-like compounds.
C5a is a 74-amino-acid glycoprotein whose receptor is a member of the rhodopsin superfamily. While antagonists have been generated to many of these receptors, similar efforts directed at family members whose natural ligands are proteins have met with little success. The recent development of hexapeptide analogs of C5a has allowed us to begin elucidation of the molecular events that lead to activation by combining a structure/activity study of the ligand with receptor mutagenesis. Removal of the hexapeptide's C-terminal arginine reduces affinity by 100-fold and eliminates the ability of the ligand to activate the receptor. Both the guanidino side chain and the free carboxyl of the arginine participate in the interaction. The guanidino group makes the energy-yielding contact with the receptor, while the free carboxylate negates "electrostatic" interference with Arg-206 of the receptor. It is the apparent movement Arg-206 induced by this set of interactions that is responsible for activation, since conversion of Arg-206 to alanine eliminates the agonist activity of the hexapeptides. Surprisingly, activation is a nearly energy-neutral event and may reflect the binding process rather than the final resting site of the ligand.
In our continuing program exploring glucose-based peptidomimetics of somatostatin (SRIF-14), we sought to improve the water solubility of our glycosides. This led to insights into the nature of the ligand binding sites at the SRIF receptor. Replacement of the C4 benzyl substituent in glucoside (+)-2 with pyridinylmethyl or pyrazin-2-ylmethyl congeners increased water solubility and enhanced affinity for the human SRIF subtype receptor 4 (sst4). We attribute this effect to hydrogen bond formation. The pyridin-3-ylmethyl substituent at C4, when combined with the imidazol-4-ylmethyl group at C2, generated (-)-19, which has the highest affinity of a glucose-based peptidomimetic at a human SRIF receptor to date (K(i) 53 +/- 23 nM, n = 6 at sst4). The C4 heterocyclic congeners of glucosides bearing a 1-methoxy substituent rather than an indole side chain at the anomeric carbon, such as (+)-16, also provided information about the Trp(8) binding pocket. We correlated the SARs at both the C4 and the Trp(8) binding pockets with calculations of the electrostatic potentials of the diverse C4 aromatic substituents using Spartan 3-21G(*) MO analysis. These calculations provide an approximate analysis of a molecule's ability to interact within a receptor binding site. Our binding studies show that benzene and indole rings, but not pyridinylmethyl nor pyrazin-2-ylmethyl rings, can bind the hydrophobic Trp(8) binding pocket of sst4. The Spartan 3-21G(*) MO analysis reveals significant negative electrostatic potential in the region of the pi-clouds for the benzene and indole rings but not for the pyridinylmethyl or pyrazin-2-ylmethyl congeners. Our data further demonstrate that the replacement of benzene or indole side chains by heterocyclic aromatic rings typified by pyridine and pyrazine not only enhances water solubility and hydrogen bonding capacity as expected, but can also profoundly diminish the ability of the pi-cloud of the aromatic substituent to interact with side chains of an aromatic binding pocket such as that for Trp(8) of SRIF-14. Conversely, these calculations accommodate the experimental findings that pyrazin-2-ylmethyl and pyridinylmethyl substituents at C4- of C1-indole-substituted glycosides afford higher affinities at sst4 than the C4-benzyl group of (+)-2. This result is consistent with the high electron density in the plane of the heterocycle depicted in Figure 6 which can accept hydrogen bonds from the C4 binding pocket of the receptor. Unexpectedly, we found that the 2-fluoropyridin-5-ylmethyl analogue (+)-14 more closely resembles the binding affinity of (+)-8 than that of (+)-2, thus suggesting that (+)-14 represents a rare example of a carbon linked fluorine atom acting as a hydrogen bond acceptor. We attribute this result to the ability of the proton to bind the nitrogen and fluorine atoms simultaneously in a bifurcated arrangement. At the NK1 receptor of substance P (SP), the free hydroxyl at C4 optimizes affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.