The energies of hydrogenic impurity states with an impurity atom located at the center of a quantum dot and on the axis of a quantum-well wire are studied. These two systems are all assumed to have an infinite confining potential. In the case of the quantum dot, the impurity eigenfunctions are expressed in terms of Whittaker functions and Coulomb scattering functions. The calculated ground-state energy of the impurity approaches the correct limit of three-dimensional hydrogen atom as the radius of the quantum dot becomes very large. In the case of the quantum-well wire, analytical solutions can be obtained if we divide the space into a two-dimensional subspace (perpendicular to the axis of the quantum-well wire) and a one-dimensional subspace (parallel to the axis of the quantum-well wire). The calculated groundstate energy of the quantum-well wire approaches the ground-state energy of the shallow-impurity atom located on the surface as the radius of the wire becomes infinite. Variations of the state energies with the radius of the quantum dot and the quantum-well wire are obtained.
The spontaneous emission (SE) of quantum dot (QD) excitons into surface plasmons in a cylindrical nanowire is investigated theoretically. Maxwell's equations with appropriate boundary conditions are solved numerically to obtain the dispersion relations of surface plasmons. The SE rate of QD excitons is found to be greatly enhanced at certain values of the exciton bandgap. Application in generation of remote entangled states via superradiance is also pointed out and may be observable with current technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.