Grain engineering through combined MACl and MAH 2 PO 2 additives in perovskite precursors improves the photovoltaic performance of perovskite/silicon tandem cells. MACl increases the grain size of wide-bandgap perovskite films and also produces smooth films. MAH 2 PO 2 suppresses non-radiative recombination sites at grain boundaries. The synergetic effects of MACl and MAH 2 PO 2 further promote grain growth and prolong the carrier recombination lifetime. This enables a power conversion efficiency of 25.4% for a perovskite/silicon tandem device. SUMMARYOrganic-inorganic halide perovskites are promising semiconductors to mate with silicon in tandem photovoltaic cells due to their solution processability and tunable complementary bandgaps. Herein, we show that a combination of two additives, MACl and MAH 2 PO 2 , in the perovskite precursor can significantly improve the grain morphology of wide-bandgap (1.64-1.70 eV) perovskite films, resulting in solar cells with increased photocurrent while reducing the open-circuit voltage deficit to 0.49-0.51 V. The addition of MACl enlarges the grain size, while MAH 2 PO 2 reduces non-radiative recombination through passivation of the perovskite grain boundaries, with good synergy of functions from MACl and MAH 2 PO 2 . Matching the photocurrent between the two subcells in a perovskite/silicon monolithic tandem solar cell by using a bandgap of 1.64 eV for the top cell results in a high tandem V oc of 1.80 V and improved power conversion efficiency of 25.4%.
Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 Â 2 detector binning, the projection resolution along the scanning direction increased of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demo...
Carbon nanotube (CNT)-based multibeam X-ray tubes provide an array of individually controllable X-ray focal spots. The CNT tube allows for flexible placement and distribution of X-ray focal spots in a system. Using a CNT tube, a computed tomography (CT) system with a noncircular geometry and a nonrotating gantry can be created. The noncircular CT geometry can be optimized around a specific imaging problem, utilizing the flexibility of CNT multibeam X-ray tubes to achieve the optimal focal spot distribution for the design constraints of the problem. Iterative reconstruction algorithms provide flexible CT reconstruction to accommodate the noncircular geometry. Compressed sensing-based iterative reconstruction algorithms apply a sparsity constraint to the reconstructed images that can partially account for missing angular coverage due to the noncircular geometry. In this paper, we present a laboratory prototype CT system that uses CNT multibeam X-ray tubes; a rectangular, nonrotating imaging geometry; and an accelerated compressed sensing-based iterative reconstruction algorithm. We apply a total variation minimization as our sparsity constraint. We present the advanced CNT multibeam tubes and show the stability and flexibility of these new tubes. We also present the unique imaging geometry and discuss the design constraints that influenced the specific system design. The reconstruction method is presented along with an overview of the acceleration of the algorithm to near real-time reconstruction. We demonstrate that the prototype reconstructed images have image quality comparable with a conventional CT system. The prototype is optimized for airport checkpoint baggage screening, but the concepts developed may apply to other application-specific CT imaging systems.INDEX TERMS Carbon nanotube x-ray sources, iterative reconstruction, compressed sensing reconstruction, total variation minimization, fixed-gantry computed tomography.
Reducing damages caused by sputtering of transparent conductive oxide (TCO) electrodes is critical in achieving highly efficient and stable perovskite/silicon tandem solar cells. Here we study the sputter caused damage...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.