PtSe2 has received substantial research attention because of its intriguing physical properties and potential practical applications. In this paper, we investigated the optical properties of bilayer and multilayer PtSe2 thin films through spectroscopic ellipsometry over a spectral range of 0.73–6.42 eV and at temperatures between 4.5 and 500 K. At room temperature, the spectra of refractive index exhibited several anomalous dispersion features below 1000 nm and approached a constant value in the near-infrared frequency range. The thermo-optic coefficients of bilayer and multilayer PtSe2 thin films were (4.31 ± 0.04) × 10−4/K and (–9.20 ± 0.03) × 10−4/K at a wavelength of 1200 nm. Analysis of the optical absorption spectrum at room temperature confirmed that bilayer PtSe2 thin films had an indirect band gap of approximately 0.75 ± 0.01 eV, whereas multilayer PtSe2 thin films exhibited semimetal behavior. The band gap of bilayer PtSe2 thin films increased to 0.83 ± 0.01 eV at 4.5 K because of the suppression of electron–phonon interactions. Furthermore, the frequency shifts of Raman-active Eg and A1g phonon modes of both thin films in the temperature range between 10 and 500 K accorded with the predictions of the anharmonic model. These results provide basic information for the technological development of PtSe2-based optoelectronic and photonic devices at various temperatures.
In this paper, we present spectroscopic ellipsometry measurements of (MA0.13FA0.87)PbI3 single crystals assessed at photon energies of 0.73–6.42 eV and at temperatures between 4.4 and 400 K. At room temperature, the refractive index was dispersed as a function of frequency, which is typical of a semiconductor. The absorption spectrum exhibited several electronic transitions. We estimated a room temperature direct band gap of 1.66 ± 0.02 eV and exciton binding energy of 40 meV. With decreasing temperature, the refractive index increased. The room-temperature thermo-optic coefficients were −1.7 × 10−4 and −2.5 × 10−4 K−1 at wavelength of 600 and 1200 nm. The exciton peak position and bandgap energy exhibited a redshift, which was attributed to a reverse ordering of the band structures. Additionally, an anomaly in exciton peak position and bandgap occurred at approximately 100–200 K due to the structural phase transition. This phenomenon was associated with the coexistence of MA/FA-disordered and MA/FA-ordered domains. Our results provide a foundation for the technological development of lead halide perovskites-based photonic devices at various temperatures.
<p>Boron Neutron Capture Therapy (BNCT) is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield) from Neutron Generator (NG) by PSTA-BATAN Yogyakarta is 2.55×10<sup>11 </sup>n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 10<sup>9</sup> n/cm<sup>2</sup>s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA) is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF<sub>2</sub> and A1F<sub>3</sub>. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×10<sup>8 </sup>n/cm<sup>2</sup>/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.