Bioprinting could spatially align various cells in high accuracy to simulate complex and highly organized native tissues. However, the uniform suspension and low concentration of cells in the bioink and subsequently printed construct usually results in weak cell-cell interaction and slow proliferation. Acoustic manipulation of biological cells during the extrusion-based bioprinting by a specific structural vibration mode was proposed and evaluated. Both C2C12 cells and human umbilical vein endothelial cells (HUVECs) could be effectively and quickly accumulated at the center of the cylindrical tube and consequently the middle of the printed construct with acoustic excitation at the driving frequency of 871 kHz. The full width at half maximum (FWHM) of cell distributions fitted with a Gaussian curve showed a significant reduction by about 2.2 fold in the printed construct. The viability, morphology, and differentiation of these cells were monitored and compared. C2C12 cells that were undergone the acoustic excitation had nuclei oriented densely within ±30° and decreased circularity index by 1.91 fold or significant cell elongation in the printing direction. In addition, the formation of the capillary-like structure in the HUVECs construct was found. The number of nodes, junctions, meshes, and branches of HUVECs on day 14 was significantly greater with acoustic excitation for the enhanced neovascularization. Altogether, the proposed acoustic technology can satisfactorily accumulate/pattern biological cells in the printed construct at high biocompatibility. The enhanced cell interaction and differentiation could subsequently improve the performance and functionalities of the engineered tissue samples.
Canine cutaneous mast cell tumors (MCT) are the lethal skin tumors. The biological behavior of the MCT cells is quite varied and unpredictable. Almost MCT dogs usually require a rapid diagnosis and therapy. However, MCT diagnosis and prognosis are still dependent on histopathology which is rather inconvenient, time-consuming, painful, and harmful for some cases. Indeed, MCT can be easily accessible using fine-needle aspiration (FNA). In this study, our biopsy specimens were classified as low- and high-grade MCT based on the novel 2-tier histopathologic grading system. We have demonstrated the usage of fine-needle aspirated MCT cells (FNA-MCT cells) from these specimens as a primary cell source to study the distribution of CD117-immunocytochemistry (CD117-ICC) staining patterns and the frequency of internal tandem duplication- (ITD-) mutant exon-11 of c-kit. The result has substantially shown that there were three staining patterns identified in the cells. Only paranuclear pattern was significantly increased in the cells from high-grade MCT. Altogether, the ITD-mutant exon-11 was also detectable only in these cells. Therefore, the result has supported our hypothesis that there was an increased opportunity to observe a higher CD117-ICC staining pattern and exon-11 mutation in high-grade MCT; even these two parameters may not precisely indicate a histopathological grade.
Our laboratory has the fundamental responsibility to study cancer stem cells (CSC) in various models of human and animal neoplasms. However, the major impediments that spike our accomplishment are the lack of universal biomarkers and cellular heterogeneity. To cope with these restrictions, we have tried to apply the concept of single cell analysis, which has hitherto been recommended throughout the world as an imperative solution pack for resolving such dilemmas. Accordingly, our first step was to utilize a predesigned spiral microchannel fabricated by our laboratory to perform size-based single cell separation using mast cell tumor (MCT) cells as a model. However, the impact of hydrodynamic shear stresses (HSS) on mechanical cell injury and viability in a spiral microchannel has not been fully investigated so far. Intuitively, our computational fluid dynamics (CFD) simulation has strongly revealed the formations of fluid shear stress (FSS) and extensional fluid stress (EFS) in the sorting system. The panel of biomedical assays has also disclosed cell degeneration and necrosis in the model. Therefore, we have herein reported the combinatorically detrimental effect of FSS and EFS on the viability of MCT cells after sorting in our spiral microchannel, with discussion on the possibly pathogenic mechanisms of HSS-induced cell injury in the study model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.