The multilevel inverters (MLI) are resourceful in producing a voltage waveform with superior-quality staircase counterfeit sinusoidal and depressed harmonic distortion (THD). Several conventional topologies are proposed to realize the MLI however, the limitations of these topologies may involve more DC sources and power-switching devices, and less THD, which in turn, increases the cost and size of the inverter. These drawbacks can be eliminated with the proposed hybrid Cascaded H-Bridge Multilevel Inverter with reduced components topology. As compared with the established MLI topologies the recommended topology having a reduced number of DC sources, power-switching devices, component count level factor, lesser TSV, more efficient, lesser THD, and cost-effective. The proposed MLI is a blend of a single-phase T-Type inverter and an H-Bridge module made of sub switches. This article incorporates the design and simulation of the multilevel inverter with staircase PWM technique. Further, the 9-level and 17-level MLI is examined with different combinational loads. The proposed inverter is stable during nonlinear loads, and it is well suited for FACTS and renewable energy grid-connected applications. An operational guideline has been explained with correct figures and tables. The Output voltage wave is realized in numerical simulation. Finally, the experimental demonstrations were performed by implementing a hardware prototype setup for both linear and nonlinear loads using the dSPACE controller laboratory. INDEX TERMSHybrid cascaded H-bridge multilevel inverter with reduced components, pulse width modulation (PWM), total harmonics distortion (THD).
This paper presents a novel topology for the single-phase 31-level asymmetrical multilevel inverter accomplished with reduced components count. The proposed topology generates maximum 31-level output voltage with asymmetric DC sources with an H-bridge. The fundamental 13-level multilevel inverter (MLI) topology is realized, and further, the topology is developed for 31-level can be used for renewable energy applications. This reduces the overall components count, cost and size of the system. Rather than the many advantages of MLIs, reliability issues play a significant role due to higher components count to reduce THD. This is a vital challenge for the researchers to increase the reliability with less THD. Several parameters are analyzed for both fundamental 13-level and developed 31-level MLIs such as total standing voltage (TSV), cost function (CF) and power loss. The inverter is tested experimentally with various combinational loads and under dynamic load variations with sudden load disturbances. Total standing voltage with the cost function for the proposed MLI is compared with various topologies published recently and is cost-effective. A detailed comparison of several parameters with graphical representation is made. Less TSV and components requirement is observed for the proposed MLI. The obtained total harmonic distortion (THD) is under IEEE standards. The topology is simulated in MATLAB/Simulink and verified experimentally with a hardware prototype under various conditions.
Power quality difficulties arise as a result of Renewable Energy Sources (RES) integrating with the grid. Voltage swell, sag, and harmonic distortion occur on the grid due to power quality issues, which have an impact on customers. An inexpensive series compensator, like the Dynamic Voltage Restorer (DVR), is the best solution for overcoming the aforementioned problems. In this article, a solar PV integrated DVR with a novel multilevel inverter is introduced to address the power quality issues in the grid. The main objective of the proposed work is to develop a DVR integrated with a 23-level multilevel inverter to enhance the power quality. In addition, an improved INC-MPPT technique is designed for the boost converter for maximum energy extraction from the solar PV modules. Despite numerous benefits of multilevel inverters, there exist several reliability challenges such as fewer component counts and reduced THD. The suggested topology can able to generate 23 levels of output voltage with asymmetrical DC sources. The MLI has several advantages such as a reduction in the overall component count, cost and size of the inverter. Additionally, a detailed mathematical analysis is presented for the rotating dq reference frame control. The dynamic performance of the DVR is evaluated with a balanced load and implemented experimentally. Simulation results of the proposed system are carried out using MATLAB/Simulink. The proposed system is implemented using a dSPACE controller with a laboratory hardware prototype and OPAL-RT real-time simulator setup as well. The results show that the design of the proposed system is more effective at compensating for voltage sag and improves the power quality significantly. The THD obtained at the grid side is lower, which is under IEEE standards. INDEX TERMSEnhanced INC MPPT technique, Photovoltaic array, Dynamic voltage restorer, Power quality, multilevel inverter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.