Ventral tegmental area (VTA) dopamine (DA) neurons in the brain’s reward circuit play a crucial role in mediating stress responses1–4 including determining susceptibility vs. resilience to social stress-induced behavioural abnormalities5. VTA DA neurons exhibit two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing6–8. Phasic firing of the neurons, which is well known to encode reward signals6,7,9, is upregulated by repeated social defeat stress, a highly validated mouse model of depression5,8,10–13. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no change in firing rate apparent in resilient individuals5,8. However, direct evidence linking—in real-time—DA neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here, we took advantage of the temporal precision and cell type- and projection pathway-specificity of optogenetics to demonstrate that enhanced phasic firing of these neurons mediates susceptibility to social defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing, in VTA DA neurons of mice undergoing a subthreshold social defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social defeat stress. Furthermore, we show differences in projection pathway-specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, while inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing pattern- and neural circuit-specific mechanisms of depression.
Proinflammatory cytokines, such as IL-1β, have been implicated in the cellular and behavioral effects of stress and in mood disorders, although the downstream signaling pathways underlying these effects have not been determined. In the present study, we demonstrate a critical role for NF-κB signaling in the actions of IL-1β and stress. Stress inhibition of neurogenesis in the adult hippocampus, which has been implicated in the prodepressive effects of stress, is blocked by administration of an inhibitor of NF-κB. Further analysis reveals that stress activates NF-κB signaling and decreases proliferation of neural stem-like cells but not early neural progenitor cells in the adult hippocampus. We also find that depressive-like behaviors caused by exposure to chronic stress are mediated by NF-κB signaling. Together, these data identify NF-κB signaling as a critical mediator of the antineurogenic and behavioral actions of stress and suggest previously undescribed therapeutical targets for depression.M ood disorders represent a major health concern, affecting over 15% of the population in developed countries, resulting in enormous personal and economic costs and, in many cases, suicide (1, 2). Despite significant efforts, the neurobiological mechanisms underlying depression have not been characterized. Both genetic and environmental factors contribute to depression, and traumatic or repeated stress is known to precipitate or exacerbate mood disorders (3-5). In addition, proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, that are induced by injury and infection as well as by psychological stress have been implicated in depressive behavior in rodent models and depressed patients (6-8).Exposure to stress and depression can result in atrophy of limbic brain regions that control emotion and mood, including inhibition of neurogenesis in the adult hippocampus (5, 9, 10). Inhibition of neurogenesis is observed with many different types of physical and psychological stressors, but the types of cells, neural stem-like cells (NSCs) or intermediate transient amplifying neural progenitor cells (ANPs), that are influenced have not been characterized (9, 11). A role for proinflammatory cytokines is supported by a recent report that IL-1β signaling is necessary and sufficient for the antineurogenic and behavioral effects of stress (6). One possible signaling cascade that could mediate the effects of IL-1β is NF-κB, which is activated by IL-1β and other cytokines both in peripheral immune cells and in the brain (8,12). Chronic stress enhances the activation of NF-κB in response to inflammatory stimuli (13,14), and social stress increases NF-κB signaling in healthy subjects and produces an exaggerated response in depressed patients (15,16).In the present study, we investigate the role of NF-κB in the cellular and behavioral responses to acute and chronic stress. The results demonstrate that the inhibition of neurogenesis by stress occurs via activation of NF-κB in NSCs and that stress-induced anhedonia, a core symptom of depr...
The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans.
Locomotor sensitization is a common and robust behavioral alteration in rodents whereby following exposure to abused drugs such as cocaine, the animal becomes significantly more hyperactive in response to an acute drug challenge. Here, we further analyzed the role of cocaine-induced silent synapses in the nucleus accumbens (NAc) shell and their contribution to the development of locomotor sensitization. Using a combination of viral vector-mediated genetic manipulations, biochemistry and electrophysiology in a locomotor sensitization paradigm with repeated, daily noncontingent cocaine (15 mg/kg) injections, we show that dominant negative cAMP-element binding protein (CREB) prevents cocaine-induced generation of silent synapses of young (30 d) rats, whereas constitutively active CREB is sufficient to increase the number of NR2B-containing NMDA receptors (NMDAR) at synapses and to generate silent synapses. We further show that occupancy of CREB at the NR2B promoter increases and is causally related to the increase in synaptic NR2B levels. Blockade of NR2B-containing NMDARs by administration of the NR2B-selective antagonist Ro256981 directly into the NAc, under conditions that inhibit cocaine-induced silent synapses, prevents the development of cocaine-elicited locomotor sensitization. Our data are consistent with a cellular cascade whereby cocaine-induced activation of CREB promotes CREB-dependent transcription of NR2B and synaptic incorporation of NR2B-containing NMDARs, which generates new silent synapses within the NAc. We propose that cocaine-induced activation of CREB and generation of new silent synapses may serve as key cellular events mediating cocaine-induced locomotor sensitization. These findings provide a novel cellular mechanism that may contribute to cocaine-induced behavioral alterations.
Decreased medial prefrontal cortex (mPFC) neuronal activity is associated with social defeat-induced depression-and anxiety-like behaviors in mice. However, the molecular mechanisms underlying the decreased mPFC activity and its prodepressant role remain unknown. We show here that induction of the transcription factor ⌬FosB in mPFC, specifically in the prelimbic (PrL) area, mediates susceptibility to stress. ⌬FosB induction in PrL occurred selectively in susceptible mice after chronic social defeat stress, and overexpression of ⌬FosB in this region, but not in the nearby infralimbic (IL) area, enhanced stress susceptibility. ⌬FosB produced these effects partly through induction of the cholecystokinin (CCK)-B receptor: CCKB blockade in mPFC induces a resilient phenotype, whereas CCK administration into mPFC mimics the anxiogenic-and depressant-like effects of social stress. We previously found that optogenetic stimulation of mPFC neurons in susceptible mice reverses several behavioral abnormalities seen after chronic social defeat stress. Therefore, we hypothesized that optogenetic stimulation of cortical projections would rescue the pathological effects of CCK in mPFC. After CCK infusion in mPFC, we optogenetically stimulated mPFC projections to basolateral amygdala or nucleus accumbens, two subcortical structures involved in mood regulation. Stimulation of corticoamygdala projections blocked the anxiogenic effect of CCK, although no effect was observed on other symptoms of social defeat. Conversely, stimulation of corticoaccumbens projections reversed CCK-induced social avoidance and sucrose preference deficits but not anxiogenic-like effects. Together, these results indicate that social stress-induced behavioral deficits are mediated partly by molecular adaptations in mPFC involving ⌬FosB and CCK through cortical projections to distinct subcortical targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.