The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola/Marburg/Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV, and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus, Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. J. Cell. Physiol. 230: 1661–1676, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans.
Pyoderma gangrenosum (PG) is an uncommon inflammatory skin disorder characterized by neutrophil dysfunction. There are currently no FDA-approved drugs for the treatment of this disease, and treatment has typically relied on traditional immunosuppressive medications such as prednisone or cyclosporine. The efficacy of biologics in the treatment of other pro-inflammatory conditions such as psoriasis, rheumatoid arthritis, and inflammatory bowel disease is well-documented in the literature. Therefore, the use of biologic medications for the treatment of rarer inflammatory skin conditions, such as PG, is a compelling topic for investigation. Biologic and small-molecule therapies allow physicians to target specific pro-inflammatory mediators that underlie PG pathogenesis. This review provides an update on the use of biologic and small-molecule medications for the treatment of PG and summarizes the latest data on the clinical efficacy and pharmacology of these treatments.
bNeisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is not preventable by vaccination and is rapidly developing resistance to antibiotics. However, the transferrin (Tf) receptor system, composed of TbpA and TbpB, is an ideal target for novel therapeutics and vaccine development. Using a three-dimensional structure of gonococcal TbpA, we investigated two hypotheses, i.e., that loop-derived antibodies can interrupt ligand-receptor interactions in the native bacterium and that the loop 3 helix is a critical functional domain. Preliminary loop-derived antibodies, as well as optimized second-generation antibodies, demonstrated similar modest ligand-blocking effects on the gonococcal surface but different effects in Escherichia coli. Mutagenesis of loop 3 helix residues was employed, generating 11 mutants. We separately analyzed the mutants' abilities to (i) bind Tf and (ii) internalize Tf-bound iron in the absence of the coreceptor TbpB. Single residue mutations resulted in up to 60% reductions in ligand binding and up to 85% reductions in iron utilization. All strains were capable of growing on Tf as the sole iron source. Interestingly, in the presence of TbpB, only a 30% reduction in Tf-iron utilization was observed, indicating that the coreceptor can compensate for TbpA impairment. Complete deletion of the loop 3 helix of TbpA eliminated the abilities to bind Tf, internalize iron, and grow with Tf as the sole iron source. Our studies demonstrate that while the loop 3 helix is a key functional domain, its function does not exclusively rely on any single residue. N eisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea (1), affects approximately 106 million people worldwide according to WHO estimates (2), with Ͼ300,000 cases of gonorrhea reported each year in the United States alone (3). A troubling contributor to these statistics is that infection with this bacterium does not result in any protective immunity (4). Additionally, approximately 50% of the women infected with the gonococcus are asymptomatic, resulting in increased spread and more severe clinical outcomes following infection (5). Most concerning of all is that the gonococcus has become increasingly drug resistant, with mounting evidence to suggest that current pharmacotherapies may soon be rendered obsolete (6, 7). To date, the characteristics of at least three multidrugresistant isolates have been published, all of which are fully resistant to ceftriaxone, the core component of the currently recommended combination therapy for the treatment of gonorrhea (7-11). With dwindling treatment options and no vaccine, gonorrhea is a serious public health concern that warrants further research.One approach to the development of therapeutics has been to study how the gonococcus acquires iron, an essential nutrient for nearly all microorganisms (12). During human infection, microorganisms are confronted with the challenge of obtaining iron in an environment that has evolved to specifically...
Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.