Background
Drug development is an expensive and time-consuming process. Literature-based discovery has played a critical role in drug development and may be a supplementary method to help scientists speed up the discovery of drugs.
Methods
Here, we propose a relation path features embedding based convolutional neural network model with attention mechanism for drug discovery from literature, which we denote as PACNN. First, we use predications from biomedical abstracts to construct a biomedical knowledge graph, and then apply a path ranking algorithm to extract drug-disease relation path features on the biomedical knowledge graph. After that, we use these drug-disease relation features to train a convolutional neural network model which combined with the attention mechanism. Finally, we employ the trained models to mine drugs for treating diseases.
Results
The experiment shows that the proposed model achieved promising results, comparing to several random walk algorithms.
Conclusions
In this paper, we propose a relation path features embedding based convolutional neural network with attention mechanism for discovering potential drugs from literature. Our method could be an auxiliary method for drug discovery, which can speed up the discovery of new drugs for the incurable diseases.
Electronic supplementary material
The online version of this article (10.1186/s12911-019-0764-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.