The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals. Neutral SNPs defined at least two genetically discrete geographic groups: an East Tropical Pacific (Mexico, east and west Galapagos Islands), and another central-west Pacific (Lord Howe Island, Middleton Reef, Norfolk Island, Elizabeth Reef, Kermadec, Hawaii and Southern Africa). More fine-grade population structure was suggested using outlier SNPs: west Pacific, Hawaii, Mexico, and Galapagos. Consistently, mtDNA pairwise Φ defined three regional stocks: east, central and west Pacific. Compared to neutral SNPs (F = 0.023-0.035), mtDNA exhibited more divergence (Φ = 0.258-0.539) and high overall genetic diversity (h = 0.794 ± 0.014; π = 0.004 ± 0.000), consistent with the longstanding eastern Pacific barrier between the east and central-west Pacific. Hawaiian and Southern African populations group within the west Pacific cluster. Effective population sizes were moderate/high for east/west populations (738 and 3421, respectively). Insights into the biology, connectivity, genetic diversity, and population demographics informs for improved conservation of this species, by delineating three to four conservation units across their Pacific distribution. Implementing such conservation management may be challenging, but is necessary to achieve long-term population resilience at basin and regional scales.
Scinax is a speciose genus of Neotropical hylid frogs. We describe a new species from western Ecuador (elevations between 0 and 1207 m) using morphology, vocalizations, and DNA sequences. We also present a new phylogeny for Scinax based on mitochondrial DNA genes 12S rRNA, Cytochrome Oxidase sub-unit I, Cytochrome B, 16S rRNA, NADH dehydrogenase subunit 1, and adjacent tRNAs. The new species, Scinax tsachila sp. nov. was previously confused with S. quinquefasciatus, a morphologically similar sympatric species. They differ by having markedly different advisement calls, distinct skin texture in the dorsum, and different bone coloration. The new species is sister to S. elaeochroa, a species that differs in advertisement call and color pattern. We provide an updated species account for Scinax quinquefasciatus and a redescription of its holotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.