BackgroundAge, reproductive history, hormones, genetics, and lifestyle are known risk factors for breast cancer, but the agents that initiate cellular changes from normal to malignant are not understood. We previously detected bovine leukemia virus (BLV), a common oncogenic virus of cattle, in the breast epithelium of humans. The objective of this study was to determine whether the presence of BLV DNA in human mammary epithelium is associated with breast cancer.MethodsThis was a case-control study of archival formalin fixed paraffin embedded breast tissues from 239 donors, received 2002–2008 from the Cooperative Human Tissue Network. Case definition as breast cancer versus normal (women with no history of breast cancer) was established through medical records and examination of tissues by an anatomical pathologist. Breast exposure to BLV was determined by in situ-PCR detection of a biomarker, BLV DNA, localized within mammary epithelium.ResultsThe frequency of BLV DNA in mammary epithelium from women with breast cancer (59%) was significantly higher than in normal controls (29%) (multiply- adjusted odds ratio = 3.07, confidence interval = 1.66–5.69, p = .0004, attributable risk = 37%). In women with premalignant breast changes the frequency of BLV DNA was intermediate (38%) between that of women with breast cancer and normal controls (p for trend < .001).ConclusionsAmong the specimens in this study, the presence of amplified BLV DNA was significantly associated with breast cancer. The odds ratio magnitude was comparable to those of well-established breast cancer risk factors related to reproductive history, hormones, and lifestyle and was exceeded only by risk factors related to genetics (familial breast cancer), high dose ionizing radiation, and age. These findings have the potential for primary and secondary prevention of breast cancer.
SUMMARY Lipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size. Similar results were obtained after depletion of atlastin or expression of a dominant-negative mutant, whereas overexpression of atlastin had the opposite effect. Atlastin depletion in Drosophila fat bodies also reduced LD size and decreased triglycerides in whole animals, sensitizing them to starvation. In mammalian cells, co-overexpression of atlastin-1 and REEP1, a paralog of the ER tubule-shaping protein DP1/REEP5, generates large LDs. The effect of atlastin-1 on LD size correlates with its activity to promote membrane fusion in vitro. Our results indicate that atlastin-mediated fusion of ER membranes is important for LD size regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.