A load frame for in situ mechanical testing is developed for the microtomography end stations at the imaging beamline P05 and the high-energy material science beamline P07 of PETRA III at DESY, both operated by the Helmholtz-Zentrum Geesthacht. The load frame is fully integrated into the beamline control system and can be controlled via a feedback loop. All relevant parameters (load, displacement, temperature, etc.) are continuously logged. It can be operated in compression or tensile mode applying forces of up to 1 kN and is compatible with all contrast modalities available at IBL and HEMS i.e. conventional attenuation contrast, propagation based phase contrast and differential phase contrast using a grating interferometer. The modularity and flexibility of the load frame allows conducting a wide range of experiments. E.g. compression tests to understand the failure mechanisms in biodegradable implants in rat bone or to investigate the mechanics and kinematics of the tessellated cartilage skeleton of sharks and rays, or tensile tests to illuminate the structure-property relationship in poplar tension wood or to visualize the 3D deformation of the tendonbone insertion. We present recent results from the experiments described including machine-learning driven volume segmentation and digital volume correlation of tomography sequences under increasing load conditions.
The coating of porous scaffolds with nanoparticles is crucial in many applications, for example to generate scaffolds for catalysis or to make scaffolds bioactive. A standard and well-established method for coating surfaces with charged nanoparticles is electrophoresis, but when used on porous scaffolds, this method often leads to a blockage of the pores so that only the outermost layers of the scaffolds are coated. In this study, the electrophoretic coating process is monitored in situ and the kinetics of nanoparticle deposition are investigated. This concept can be extended to design a periodic electrophoretic deposition (PEPD) strategy, thus avoiding the typical blockage of surface pores. In the present work we demonstrate successful and homogeneous electrophoretic deposition of hydroxyapatite nanoparticles (HAn, diameter ≤200 nm) on a fibrous graphitic 3D structure (ultralightweight aerographite) using the PEPD strategy. The microfilaments of the resulting scaffold are covered with HAn both internally and on the surface. Furthermore, protein adsorption assays and cell proliferation assays were carried out and revealed that the HAn-decorated aerographite scaffolds are biocompatible. The HAn decoration of the scaffolds also significantly increases the alkaline phosphatase activity of osteoblast cells, showing that the scaffolds are able to promote their osteoblastic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.