There is growing evidence that common variants of the transforming growth factor-beta (TGF-beta) signaling pathway may modify breast cancer risk. In vitro studies have shown that some variants increase TGF-beta signaling, whereas others have an opposite effect. We tested the hypothesis that a combined genetic assessment of two well-characterized variants may predict breast cancer risk. Consecutive patients (n = 660) with breast cancer from the Memorial Sloan-Kettering Cancer Center (New York, NY) and healthy females (n = 880) from New York City were genotyped for the hypomorphic TGFBR1*6A allele and for the TGFB1 T29C variant that results in increased TGF-beta circulating levels. Cases and controls were of similar ethnicity and geographic location. Thirty percent of cases were identified as high or low TGF-beta signalers based on TGFB1 and TGFBR1 genotypes. There was a significantly higher proportion of high signalers (TGFBR1/TGFBR1 and TGFB1*CC) among controls (21.6%) than cases (15.7%; P = 0.003). The odds ratio [OR; 95% confidence interval (95% CI)] for individuals with the lowest expected TGF-beta signaling level (TGFB1*TT or TGFB1*TC and TGFBR1*6A) was 1.69 (1.08-2.66) when compared with individuals with the highest expected TGF-signaling levels. Breast cancer risk incurred by low signalers was most pronounced among women after age 50 years (OR, 2.05; 95% CI, 1.01-4.16). TGFBR1*6A was associated with a significantly increased risk for breast cancer (OR, 1.46; 95% CI, 1.04-2.06), but the TGFB1*CC genotype was not associated with any appreciable risk (OR, 0.89; 95% CI, 0.63-1.21). TGFBR1*6A effect was most pronounced among women diagnosed after age 50 years (OR, 2.20; 95% CI, 1.25-3.87). This is the first study assessing the TGF-beta signaling pathway through two common and functionally relevant TGFBR1 and TGFB1 variants. This approach may predict breast cancer risk in a large subset of the population.
TGFBR1*6A is a common hypomorphic variant of the type 1 transforming growth factor B receptor (TGFBR1), which has been associated with increased cancer risk in some studies. Although TGFBR1*6A is capable of switching TGF-B growthinhibitory signals into growth-stimulatory signals when stably transfected into MCF-7 breast cancer cells, the biological effects of TGFBR1*6A are largely unknown. To broadly explore the potential oncogenic properties of TGFBR1*6A, we assessed its effects on NIH-3T3 cells as well as its effect on the migration and invasion of MCF-7 cells. We found that TGFBR1*6A has decreased oncogenic properties compared with TGFBR1.
Transforming growth factor-B (TGF-B) signaling is frequently altered in colorectal cancer. Using a novel model of mice heterozygous for a targeted null mutation of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.