Cutaneous radiation syndrome (CRS) is the delayed consequence of localized skin exposure to high doses of ionizing radiation. Here we examined for the first time in a large animal model the therapeutic potential of autologous adipose tissue-derived stroma cells (ASCs). For experiments, Göttingen minipigs were locally gamma irradiated using a 60Co source at the dose of 50 Gy and grafted (n = 5) or not (n = 8). ASCs were cultured in MEM-alpha with 10% fetal calf serum and basic fibroblast growth factor (2 ng.mL−1) and post irradiation were intradermally injected on days 25, 46, 67 and finally between days 95 and 115 (50×106 ASCs each time) into the exposed area. All controls exhibited a clinical evolution with final necrosis (day 91). In grafted pigs an ultimate wound healing was observed in four out of five grafted animals (day 130 +/− 28). Immunohistological analysis of cytokeratin expression showed a complete epidermis recovery. Grafted ASCs accumulated at the dermis/subcutis barrier in which they attracted numerous immune cells, and even an increased vasculature in one pig. Globally this study suggests that local injection of ASCs may represent a useful strategy to mitigate CRS.
BackgroundExposure to high doses of ionizing radiation (IR) can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.Methods and FindingsIR-induced DNA damage, repair and cellular survival were studied in 15 cm2 of minipig skin exposed in vivo to ∼50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF) formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of <1% of keratinocytes at 28–70 days. The latter contained large RIFs that included ATM-p, indicating the accumulation of complex DNA damage. At 96 days most of the cells with RIFs had disappeared. The frequency of active-caspase-3-positive apoptotic cells was 17-fold increased 3 days after IR and remained >3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+) were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.ConclusionsAcute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.
Background: Cytokine mRNA quantification is widely used to investigate cytokine profiles, particularly in small samples. Real-time polymerase chain reaction is currently the most reliable method of quantifying low-level transcripts such as cytokine and cytokine receptor mRNAs. This accurate technique allows the quantification of a larger pattern of cytokines than quantification at the protein level, which is limited to a smaller number of proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.