New aspects concerning the mechanism of formation of chitosan physical hydrogels without any cross-linking agent were studied. The gelation took place during the evaporation of a hydroalcoholic solution of chitosan. We first demonstrated that it was possible to form a physical hydrogel from a hydrochloride form of chitosan. Chromatographic methods showed that during the gel formation, when the initial concentration is over C, the critical concentration of chain entanglement, the water and acid used for the solubilization of the polymer were both eliminated. This particular situation contributed to decrease the dielectric constant of the medium and the apparent charge density of chitosan chains, thus inducing the formation of a three-dimensional network through hydrophobic interactions and hydrogen bonding. In the gelation process, this step was kinetically determining. The speed of evaporation of water and acid were determined and different initial conditions were compared. Thus, we investigated the influence of: the initial polymer concentration, the nature of the counterion and the alcohol, the temperature and the geometry of the reactor. Our results allowed us to confirm the existence of a second critical initial concentration C, from which the evaporation of water became more difficult. We suggested that C corresponded to a reorganization of the solution involving the presence of gel precursors. Then, a mechanism of formation of physical hydrogels of chitosan in a hydroalcoholic medium could be proposed. For the first time, we demonstrated that it was possible to generate physical hydrogels in the presence of various diols, which size of the carbonated chain appeared as a limiting factor for the gelation process. These physical hydrogels of chitosan are currently used in our laboratory for tissue engineering in the treatment of third degree burns with the possibility to adapt their mechanical properties from the choice of both the acid or the alcohol used.
This work deals with chain ordering in aqueous and water-alcohol solutions of chitosan. The so-called polyelectrolyte peak is investigated by small-angle synchrotron X-ray scattering. The polyelectrolyte microstructure was characterized by the position of the maximum of the polyelectrolyte scattering peak qmax, which scales with the polymer concentration cp as qmax approximately cp alpha. An evolution of the power law exponent alpha is observed as a function of the degree of acetylation (DA) of chitosan, which is responsible for changes of both the charge density (f) and the hydrophobicity of the polymer chains. The results highlighted the two organization regimes of the theory of Dobrynin and Rubinstein, investigated here for the first time for a natural polymer. At low DAs, alpha approximately 1/2, in agreement with a pearl necklace organization where the structure is controlled by the string between pearls. For higher DA, alpha approximately 1/3, and the correlation revealed by the polyelectrolyte peak is controlled by the pearls. This analysis offers a way to study quantitatively the balance between solvophobic-solvophilic interactions that play an important role in the solution properties of natural polymers. In addition, the role of several parameters acting on the interaction balance were evidenced, such as the nature of the counterion, the composition of the solvent (amount of alcohol in the aqueous solution), and the screening of Coulombic forces by salt addition. Finally, the nanostructure transition from a polyelectrolyte solution to a physical gel is discussed. The gel state is reached when the solvophobic interactions are favored, but depending on the gelation route the polyelectrolyte ordering could be preserved or not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.