The binary neutron star (BNS) merger GW170817 was the first astrophysical source detected in gravitational waves and multiwavelength electromagnetic radiation. The almost simultaneous observation of a pulse of gamma rays proved that BNS mergers are associated with at least some short gamma-ray bursts (GRBs). However, the gamma-ray pulse was faint, casting doubt on the association of BNS mergers with the luminous, highly relativistic outflows of canonical short GRBs. Here we show that structured jets with a relativistic, energetic core surrounded by slower and less energetic wings produce afterglow emission that brightens characteristically with time, as recently seen in the afterglow of GW170817. Initially, we only see the relatively slow material moving towards us. As time passes, larger and larger sections of the outflow become visible, increasing the luminosity of the afterglow. The late appearance and increasing brightness of the multiwavelength afterglow of GW170817 allow us to constrain the geometry of its ejecta and thus reveal the presence of an off-axis jet pointing about 30° away from Earth. Our results confirm a single origin for BNS mergers and short GRBs: GW170817 produced a structured outflow with a highly relativistic core and a canonical short GRB. We did not see the bright burst because it was beamed away from Earth. However, approximately one in 20 mergers detected in gravitational waves will be accompanied by a bright, canonical short GRB.
We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that the cocoon material is confined between off-axis angles 15 θ 45 • and gives origin to X-ray transients with a duration of a few to ∼ 10 seconds, delayed by a few seconds from the time of the merger. We also discuss the distance at which such transients can be detected, finding that it depends sensitively on the assumptions that are made about the radiation spectrum. Purely thermal cocoon transients are detectable only out to a few Mpc, Comptonized transients can instead be detected by the FERMI GBM out to several tens of Mpc.
We consider the long term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts (SGRBs). The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the prompt emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into α-particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The time scale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system. The associated energies and time scales are consistent with those occurring in X-ray flares.
We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gammaray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.