A toluene solution of 4,4 -methylenebis(2,6-diethylaniline) was spin coated on Si wafers. The samples were derivatized with pentafluorobenzaldehyde (PFB) in order to determine the primary amino groups on the surface. XPS C 1s and N 1s and C and N K-edge NEXAFS of underivatized and derivatized films were carefully analyzed. The result was that after 10 min of exposure the gas-surface reaction was already completed. A reasonable derivatization reaction yield in the order of 90% is derived from the experiments. This number correlates well to a reaction yield obtained by a wet chemical approach.
The wettability of the surfaces inside the microchannels of a microfluidic device is an important property considering a liquid flows through them. Contact angle measurements usually applied to test the wettability of surfaces cannot be used for an analysis of microchannel walls within microfluidic devices. A workaround is the use of surface analytical methods, which are able to reach points of interest in microchannels and may provide information on the surface chemistry established there. In calibrating these methods by using flat polymer wafers, where the contact angle can be measured as usual, data measured in real microchannels can be evaluated in terms of wetting properties. Reference wafers of bisphenol-A polycarbonate, a polymeric material that is often used in fluidic microdevice fabrication, were treated under different oxygen plasma conditions. The modified surfaces were characterized by using XPS, time of flight (ToF)-SIMS and atomic force microscope (AFM). Surface chemistry and surface topography have been correlated with contact angle measurements. In addition, effects of ageing or rinsing after plasma treatment have also been investigated.
It is known that aminosilanized Si wafers may be used as microarray platforms. Results of an XPS study of a cleaning applied to Si wafers prior to aminosilanization are presented and discussed. Furthermore, the results of an aminosilanization protocol optimized in terms of nitrogen chemistry are described. After optimization of the protocol a free amine content of 94% was reached. The surface chemistry was investigated in this study by using XPS, time of flight (ToF)-SIMS and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Reference to aminosilanization protocols reported in the literature has been made.
Cr2O3, CrCl3, α-CrF3, CrF3⋅3H20 and Cr(OH)3 were investigated by x-ray photoelectron (XPS) and x-ray excited Auger electron spectroscopy (XAES) using a latest generation XPS spectrometer. Non-conductive powders are analyzed with ultimate energy resolution. Multiplet splitting features and/or satellite emission were observed in the Cr 2p and Cr 3s spectra. Cr(III) compounds are of interest in many applications as for example in corrosion and catalysis. Chromia and chromium-III-fluoride activated by reaction with fluoroalkanes are very promising industrial catalysts. It is the aim of this selection of spectral reference data to enable deeper insight in the formation of catalytically active fluorinated chromia phases by using XPS analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.