Osteoarthritis is a common type of degenerative joint disease. Inflammation-related chondrocyte senescence plays a major role in the pathogenesis of osteoarthritis. Omentin-1 is a newly identified anti-inflammatory adipokine involved in lipid metabolism. In this study, we examined the biological function of omentin-1 in cultured chondrocytes. The presence of omentin-1 potently suppresses IL-1binduced cellular senescence as revealed by staining with senescence-associated beta-galactosidase (SAb-Gal). At the cellular level, omentin-1 attenuates IL-1b-induced G1 phase cell-cycle arrest. Mechanistically, we demonstrate that omentin-1 reduced IL-1b-induced expression of senescent factors including caveolin-1, p21, and PAI-1 as well as p53 acetylation through ameliorating SIRT1 reduction. Notably, silencing of SIRT1 abolishes IL-1b-induced senescence along with the induction of p21 and PAI-1, suggesting that the action of omentin-1 in chondrocytes is dependent on SIRT1. Collectively, our results revealed the molecular mechanism through which the adipokine omentin-1 exerts a beneficial effect, thereby protecting chondrocytes from senescence. Thus, omentin-1 could have clinical implication in the treatment of osteoarthritis.
Dysregulation of long noncoding RNA (lncRNA) is frequently involved in the progression and development of osteosarcoma. LncRNA RUSC1-AS1 is reported to be upregulated and acts as an oncogene in hepatocellular carcinoma, cervical cancer and breast cancer. However, its role in osteosarcoma has not been studied yet. In the present study, we investigated the role of RUSC1-AS1 in osteosarcoma both in vitro and in vivo . The results showed that the expression of RUSC1-AS1 was significantly upregulated in osteosarcoma cell line U2OS and HOS compared to that in human osteoblast cell line hFOB1.19. Similar results were found in human samples. Silencing RUSC1-AS1 by siRNA significantly inhibited U2OS and HOS cell proliferation and invasion, measured by CCK-8 and transwell assay. Besides, knockdown of RUSC1-AS1 increased cell apoptosis in osteosarcoma cell lines. In addition, RUSC1-AS1 promoted the epithelial-mesenchymal transition (EMT) process of osteosarcoma cells. In vivo experiments confirmed that RUSC1-AS1 knockdown had an inhibitory effect on osteosarcoma tumor growth. Mechanically, we showed that RUSC1-AS1 directly binds to and inhibits miR-340-5p and activates the PI3K/AKT signaling pathway. In conclusion, our study demonstrated that RUSC1-AS1 promoted osteosarcoma development both in vitro and in vivo through sponging to miR-340-5p and activating the PI3K/AKT signaling pathway. Therefore, RUSC1-AS1 becomes a potential therapeutic target for osteosarcoma.
Osteoarthritis (OA) is a common degenerative disease that is associated with the degradation of articular cartilage. Accumulating evidence has confirmed that LIM mineralization protein-1 (LMP-1) is an important agent of bone formation and has been shown to be osteoinductive in various types of disease. However, the underlying mechanisms of LMP-1 in the pathogenesis of OA remain unknown. The present study aimed to evaluate the role and potential mechanism of LMP-1 in IL-1β-stimulated OA chondrocytes. CHON-001 cells were transfected with pcDNA3.1-LMP-1, pcDNA3.1, negative control-small interfering (si)RNA or LMP-1 siRNA for 24 h and then induced by IL-1β for 12 h to establish an OA model in vitro . Cell viability, apoptosis and inflammatory cytokine (IL-6, IL-8 and TNF-α) release were assessed using MTT assay, flow cytometry and ELISA, respectively. The expression levels of LMP-1, cleaved-caspase 3, phosphorylated (p)-p65, p65, p-JNK and JNK were analyzed using reverse transcription-quantitative PCR and western blotting. Overexpression of LMP-1 notably alleviated the IL-1β-induced inflammatory response in CHON-001 cells, as shown by increased cell viability, decreased apoptosis, suppressed expression of cleaved-caspase 3 and a decreased cleaved-caspase 3/caspase 3 ratio. Moreover, IL-1β-induced secretion of IL-6, IL-8 and TNF-α in CHON-001 cells; this was reversed by pcDNA3.1-LMP-1. However, knocking down LMP-1 expression exert opposite effects on the IL-1β-induced inflammatory response in CHON-001 cells, as evidenced by the decreased cell viability, increased apoptosis, enhanced expression of cleaved-caspase 3 and cleaved-caspase 3/caspase 3 ratio and enhanced secretion of IL-6, IL-8 and TNF-α observed. The present data demonstrated that LMP-1 siRNA notably inhibited LMP-1 expression, suppressed cell viability, promoted apoptosis and enhanced cleaved-caspase 3 expression and cleaved-caspase 3/caspase 3 ratio. In addition, LMP-1 siRNA promoted the release of inflammatory factors in CHON-001 cells. It was also found that pcDNA3.1-LMP-1 inhibited p-p65 and p-JNK expression, as well as decreasing the p-p65/p65 and p-JNK/JNK ratio. Nevertheless, there was no significant difference in the mRNA expression levels of p65 and JNK between the groups. Taken together, these findings indicated that overexpression of LMP-1 alleviated IL-1β-induced chondrocytes injury by regulating the NF-κB and MAPK/JNK pathways, suggesting that LMP-1 may be a valuable therapeutic agent for OA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.