Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.
Surface-enhanced Raman scattering (SERS) is a technique capable of identifying each component in a mixture because of itsintrinsically narrow spectral bands. In a clinical setting, the identification of bacteria from its initial culture by collecting the colonies on the culture plate significantly decreases the analysis time and the cost. The identification of bacteria from their mixtures is attempted using SERS. A simple mixing procedure of bacterial samples and concentrated colloidal suspension is proven to be mostly satisfactory for the generation of the reproducible SERS spectra that can be used for bacterial identification. The mixture of three different but related bacterial species Shigella sonnei, Proteus vulgaris, and Erwinia amylovara and three Escherichia coli strains (BFK13, BHK7, DH5 α) are used as model systems to test the feasibility of the approach. The results indicate that it is possible to identify the composition of a bacterial mixture. This approach can easily be utilized for the bacteria originating from the same source with similar growth profiles.
Surface-enhanced Raman scattering (SERS) is a powerful technique used for obtaining chemical information about the moleculesand molecular structures in the vicinity of surfaces of noble metal nanostructures. The chemical information acquired through SERS can be used for not only characterization but also detection and identification. In a clinical setting, rapid and accurate identification of micro-organisms is critical. The biochemical information collected through the SERS spectra can be used for quick identification of micro-organisms. The concentrated silver colloidal nanoparticles (AgNPs) are simply mixed with micro-organisms after culturing, and their SERS spectra acquired. Since the nanoparticles are in contact with the cell wall of the micro-organism, the biochemical information obtained is mostly assumed as originating from the cell wall which the AgNPs are in contact with, and is considered as the 'fingerprint' of the micro-organism, which can be used for the identification. Since a SERS spectrum can be acquired only in seconds, the obtained spectrum can be used for fast micro-organism identification. The reproducibility of the spectra obtained from micro-organisms is first tested, and then the obtained spectra are used for the goal. The identification of micro-organisms in mixtures is also attempted in model mixtures. It is demonstrated that the SERS can be used for fast and accurate identification of micro-organisms such as bacteria and yeast, even in their mixtures. Four bacteria, i.e. Shigella sonnei, Erwinia amylovara, Proteus vulgaris and DH5α (E. coli strain), and three yeast cells, i.e. Hyphopichia burtonii, Candida parapsilosis and Filobasidiella neoformans are used as model micro-organisms in the study.
A fast, sensitive and ratiometric biosensor strategy for small molecule detection was developed through nanopore actuation. The new platform engineers together, a highly selective molecular recognition element, aptamers, and a novel signal amplification mechanism, gated nanopores. As a proof of concept, aptamer gated silica nanoparticles have been successfully used as a sensing platform for the detection of ATP concentrations at a wide linear range from 100 μM up to 2 mM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.