<span>In this paper, the efficiency of photovoltaic panels is improved by adding a sun tracking system. The solar tracking system is used for tracking the sun so that photovoltaic always faces the sun. This system uses a dual axis consisting of horizontal rotation axis and a vertical rotation axis. The horizontal rotational axis motion is to follow the azimuth angle of the sun from north to south. Then, to follow the sun's azimuth angle from east to west is the vertical axis motion. Both types of movements are controlled using a PID controller that is optimized with an artificial intelligence approach, namely particle swarm optimization (PID-PSO), firefly algorithm (PID-FA), imperialist competitive algorithm (PID-ICA), bat algorithm (PID-BA), and ant colony optimization (PID-ACO). Experiments of various approaches were carried out and the corresponding performance compared. The experimental results show that PID-BA performs best in terms of settling time and overshoot. The results also allow the comparison of different PID controller and the calculation of the fastest completion time.</span>
Microgrids are one example of a low voltage distributed generation pattern that can cover a variety of energy, such as conventional generators and renewable energy. Economic dispatch (ED) is an important function and a key of a power system operation in microgrids. There are several procedures to find the optimum generation. The first step is to find every feasible state (FS) for thermal generator ED. The second step is to find optimum generation based on FS using incremental particle swarm optimization (IPSO), FS is assumed that all units are activated. The third step is to train the input and output of the IPSO into deep learning (DL). And the last step is to compare DL output with IPSO. The microgrids system in this paper considered 10 thermal units and a wind plant with power generation based on probabilistic data. IPSO shows good results by being capable to generate a total generation as the load requirement every hour for 24 h. However, IPSO has a weakness in execution times, from 10 experiments the average IPSO process takes 30 min. DL based on IPSO can make the execution time of its ED function faster with an 11 input and 10 output architecture. From the same experiments with IPSO, DL can produce the same output as IPSO but with a faster execution time. From the total cost side, wind energy is affecting to reduce total cost until USD 22.86 million from IPSO and USD 22.89 million from DL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.