As internet traffic grows daily, so does the need to protect it. Network security protects data from unauthorized access and ensures their confidentiality and integrity. Steganography is the practice and study of concealing communications by inserting them into seemingly unrelated data streams (cover media). Investigating and adapting machine learning models in digital image steganalysis is becoming more popular. It has been demonstrated that steganography techniques used within such a framework perform more securely than do techniques using hand-crafted pieces. This work was carried out to investigate and examine machine learning methods’ critical contributions and beneficial roles. Machine learning is a field of artificial intelligence (AI) that provides the ability to learn without being explicitly programmed. Steganalysis is considered a classification problem that can be addressed by employing machine learning techniques and recent deep learning tools. The proposed ensemble model had four models (convolution neural networks (CNNs), Inception, AlexNet, and Resnet50), and after evaluating each model, the system voted on the best model for detecting stego images. Since active steganalysis is a classification problem that may be solved using active deep learning tools and modern machine learning methods, this paper’s major goal was to analyze deep learning algorithms’ vital roles and main contributions. The evaluation shows how to successfully detect images that contain a steganography algorithm that hides data in images. Thus, it suggests which algorithms work best, which need improvement, and which are easier to identify.
Abstract-The prediction plays the important role in detecting efficient protection and therapy/treatment of cancer. The prediction of mutations in gene needs a diagnostic and classification, which is based on the whole database (big dataset enough), to reach sufficient accuracy/correct results. Since the tumor suppressor P53 is approximately about fifty percentage of all human tumors because mutations that occur in the TP53 gene into the cells. So, this paper is applied on tumor p53, where the problem is there are several primitive databases (e.g. excel genome and protein database) contain datasets of TP53 gene with its tumor protein p53, these databases are rich datasets that cover all mutations and cause diseases (cancers). But these Data Bases cannot reach to predict and diagnosis cancers, i.e. the big datasets have not efficient Data Mining method, which can predict, diagnosis the mutation, and classify the cancer of patient. The goal of this paper to reach a Data Mining technique, that employs neural network, which bases on the big datasets. Also, offers friendly predictions, flexible, and effective classified cancers, in order to overcome the previous techniques drawbacks. This proposed technique is done by using two approaches, first, bioinformatics techniques by using BLAST, CLUSTALW, etc, in order to know if there are malignant mutations or not. The second, data mining by using neural network; it is selected (12) out of (53) TP53 gene database fields. To clarify, one of these 12 fields (gene location field) did not exists inTP53 gene database; therefore, it is added to the database of TP53 gene in training and testing back propagation algorithm, in order to classify specifically the types of cancers. Feed Forward Back Propagation supports this Data Mining method with data training rate (1) and Mean Square Error (MSE) (0.00000000000001). This effective technique allows in a quick, accurate and easy way to classify the type of cancer.
Objective: Cancer is one of the horrendous diseases. Classifying cancer is founded on identifying cancer-causing mutations in gene sequences. Although genetic analysis can predict certain types of cancer, there is currently no effective method for predicting cancers. Therefore, the purpose of this paper is to predict the cancer types and to find a data mining technique that uses two different machine learning algorithms for classifying cancer. Moreover, earlier detection of the mutated tumor protein P53 gene can predict treatment and gene therapy techniques. Methods: (UMD-2010) the Universal Mutation Database is used to diagnose mutations in genes. The challenge, however, is that the database very basic. Besides, it is an excel format database. Due to its limitations, the data base cannot be used to classify cancer. In addition, bioinformatics techniques such as pairwise alignment and BLAST are used, followed by machine learning algorithms that use neural network algorithms to classify cancer based on malignant mutations in the TP53 gene, by selecting (12) out of (53) database fields for the TP53 gene database in the second stage. It should be noted that the (UMDCell-line2010) database does not have one of these twelve fields (Field of gene locus). Result: As a Utilizing MLP and SVM for training and testing a set number of fields, the Machin learning methods were found to be an effective way to classify cancers. Where the Relative Absolute Error for MLP and SVM is 83.6005 % ,65.6605 %, the accuracy is 90 %, 93.7% respectively. Conclusion: Following the learning and testing stages, the mean absolute error (MAE), used to measure the errors was found in the SVM less than the (MAE) in MLP algorithm. we can conclude that using SVM is considered better than the MLP algorithm because the accuracy in SVM better than the accuracy of MLP.
Swarm intelligence (SI), an important aspect of artificial intelligence, is increasingly gaining popularity as more and more high-complexity challenges necessitate solutions that are sub-optimal but still feasible in a fair amount of time. Artificial intelligence that mimics the collective behavior of a group of animals is known as swarm intelligence. Attempting to survive. It is primarily influenced by biological systems. The main aim of our article is to find out more about the guiding principle, classify possible implementation areas, and include a thorough analysis of several SI algorithms. Swarms can be observed in ant colonies, fish schools, bird flocks, among other fields. During this article, we will look at some Swarm instances and their behavior. We see many Swarm Intelligence systems, like Ant colony Optimization, which explains ant activity, nature, and how they conquer challenges; in birds, we see Particle Swarm Optimization is a swarm intelligence-based optimization technique, and how the locations must be positioned based on the three concepts. The Bee Colony Optimization follows, and explores the behavior of bees, their relationships, as well as movement and how they work in a swarm. This paper explores some of the methods and algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.