In the case of thermoplastic elastomers (TPEs) based on nonpolar polypropylene (PP) and polar rubbers, a small quantity of a third component known as the compatibilizer is added to maximize the compatibility between the incompatible blend components. Generally, one part of the compatibilizer reacts with the nonpolar PP phase and the other part of the compatibilizer reacts with the polar rubber phase, which in turn produces TPEs with useful properties. Till today, there have been no reports in the literature that examine the effect of a compatibilizer that can have multifaceted interactions with the incompatible blend components for the development of TPEs with unique properties. Accordingly, here, an ethylene-acrylic ester-maleic anhydride terpolymer (E-AE-MA-TP) has been used as the compatibilizer for the preparation of TPEs based on nonpolar isotactic polypropylene (i-PP) and polar epichlorohydrin rubber (ECR). The E-AE-MA-TP compatibilizer contains ethylene groups, acrylic groups, and anhydride/acid groups along its backbone, which act as the sites for establishing multifaceted interactions with both i-PP and ECR. The compatibilization efficiency of the E-AE-MA-TP compatibilizer has been analyzed by contact angle measurements, Fourier transform infrared (FTIR) spectroscopy, tensile stress−strain studies, mixing torque profiles, rheological studies, differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) images. The particle size of the dispersed ECR domains in the i-PP matrix of the i-PP/ECR blend prominently decreases (∼90% reduction) by incorporation of a very low dosage (5 wt %) of the E-AE-MA-TP compatibilizer. The i-PP/ECR (40 wt %/60 wt %) blend containing 5 wt % compatibilizer displays outstanding mechanical properties (especially strain at break value (∼370%)), which are superior to the mechanical properties of several compatibilized TPEs (based on PP and polar rubbers) reported in the literature. The unique properties of TPEs based on i-PP and ECR in the presence of the E-AE-MA-TP compatibilizer is attributed to the efficacy of the E-AE-MA-TP compatibilizer to establish multifaceted interactions with both i-PP and ECR.
The aim of the study was to investigate the friction and wear phenomena of 3 mol % yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) ceramics with the inclusion of copper oxide (CuO) in large area conformal contact geometry. The pin-on-disk tribometer was used to conduct the dry sliding test using CuO/3Y-TZP as pin and alumina as counter surface. The coefficient of friction (μ) for CuO-added 3Y-TZP was decreased by ∼38% compared to pure 3Y-TZP due to formation of protective tribo film to the substrate. In addition, the experiments also showed that the specific wear rate (k) was reduced by ∼54% with the inclusion of CuO in to 3Y-TZP matrix. The different phases of the zirconia, copper, and yttria as well as the phase transformation before and after sliding test were identified by X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDS) analysis revealed the existence of CuO in the patchy layers in the worn-out surface of the tested CuO/3Y-TZP sample leading to lower coefficient of friction and improve the wear resistance against alumina counterface in conformal contact geometry. Severe wear mechanism was the dominating factor due to the local plastic deformation of the large number of asperities since the pair of contact was conformal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.