PurposeThe purpose of this paper is to perform a comparative analysis between the productivity metrics recommended in the literature and those that companies in the knowledge-intensive services sector use in practice.Design/methodology/approachTo collect information, a systematic review of the literature was used, to apply virtual surveys and interviews among managers of different companies representing the sector. For data analysis, categorical optimal scales, homogeneity tests, tetrachoric correlation matrices, word clouds and association coefficients for dichotomous variables were used.FindingsThere are association patterns between the metrics used and the nature of the work performed. Despite the heterogeneity observed in the productivity metrics, categorization guidelines related to the traditional, human resources and customer-oriented approaches emerge.Practical implicationsPossible neglects using metrics aimed at valuing the intellectual capital immersed in human resources are evident, particularly in the follow-up to autonomy, knowledge management, human capital, teamwork, training and capacity building metrics, among others. Conversely, face-to-face monitoring metrics, such as absenteeism, are overvaluation.Originality/valueThe approaches and metrics discussed and the results obtained, provide information so that knowledge-intensive companies have a reference framework to identify and select useful metrics to assess the work carried out by their workforce.
La investigación indaga sobre el poder predictivo que el desempeño académico de secundaria tiene sobre el éxito académico en la universidad, al igual que las implicaciones de su incorporación en el proceso de admisión como moderador de la desigualdad social en nuestro entorno. Método: la población, estudiantes que ingresaron a la Universidad de Caldas en los años 2011-2012. Se acudió a los modelos de regresión múltiple y al cálculo de la importancia relativa de las variables regresoras para medir su capacidad predictiva. Se realizó un análisis comparativo de la incidencia que los resultados en las pruebas del ICFES tienen como reproductor de las desigualdades sociales. Resultados: el modelo obtenido contempla al desempeño en secundaria y al puntaje de admisión como variables predictoras del éxito universitario, explicando un 18.3% de la variabilidad total de los datos. La importancia relativa arroja que el 78.3% se le atribuye al desempeño en secundaria y el 21.7% al puntaje de admisión. Conclusión: los resultados obtenidos son consistentes con múltiples investigaciones en el área, por lo que la recomendación apunta a incorporar el rendimiento académico de secundaria en los procesos de admisión de las instituciones de educación superior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.