We study how autonomous robots can learn by themselves to improve their depth estimation capability. In particular, we investigate a self-supervised learning setup in which stereo vision depth estimates serve as targets for a convolutional neural network (CNN) that transforms a single still image to a dense depth map. After training, the stereo and mono estimates are fused with a novel fusion method that preserves high confidence stereo estimates, while leveraging the CNN estimates in the low-confidence regions. The main contribution of the article is that it is shown that the fused estimates lead to a higher performance than the stereo vision estimates alone. Experiments are performed on the KITTI dataset, and on board of a Parrot SLAMDunk, showing that even rather limited CNNs can help provide stereo vision equipped robots with more reliable depth maps for autonomous navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.