Nerolidol, an acyclic sesquiterpene found as a major constituent of several essential oils, has several pharmacological activities, but its action in pain processes has never been studied. The purpose of our research was to evaluate the antinociceptive and anti-inflammatory activities of nerolidol, as well as possible mechanisms of action, in experimental mouse models of pain. Antinociceptive activity was evaluated using the acetic acid-induced writhing test, the formalin test, and the hot-plate test. The nerolidol-treated group showed lesser acetic acid-induced abdominal contractions than the control group in all of the three doses tested (200, 300, and 400 mg/kg, p.o.). The formalin test doses of 300 and 400 mg/kg p.o. inhibited licking time, in both the first phase and the second phase. In the hot-plate test, nerolidol did not alter latency at any of the observed time points. Motor coordination, evaluated through the rotarod test, was not hindered in animals treated with nerolidol. Regarding the mechanism of action, the antinociceptive activity of nerolidol is related to the GABAergic system, and not to the opioidergic or ATP-sensitive K(+) channels. Treatment with nerolidol reduced carrageenan-induced paw edema. In the model of carrageenan-induced peritonitis, nerolidol decreased the influx of polymorphonuclear cells and also reduced levels of tumor necrosis factor (TNF-α) in peritoneal lavage. Nerolidol reduced production of interleukin 1 beta (IL-1β) in LPS-stimulated, peritoneal macrophages. Thus, these results showed that nerolidol has antinociceptive activity with possible involvement of the GABAergic system, and anti-inflammatory activity, attributed to the suppression of TNF-α and IL-1β proinflammatory cytokines.
Geraniol (GER) is a monoterpene alcohol with various biochemical and pharmacological properties present in the essential oil of more than 160 species of herbs (especially the Cymbopogon genus). In this study, we evaluated the antinociceptive activity of GER in behavioural and electrophysiological in vitro experimental models of nociception using male Swiss mice. GER (12.5, 25 or 50 mg/kg i.p. and 50 or 200 mg/kg p.o.) reduced the number of writhes induced by acetic acid. The opioid antagonist naloxone (5 mg/kg s.c.) administered in mice subsequently treated with GER (25 mg/kg i.p.) did not reverse such antinociceptive activity, suggesting a non-opioid pathway for the mechanism of action. GER (12.5, 25 and 50 mg/kg i.p.) reduced paw licking time in the second phase of the formalin test. Also, in the glutamate test, GER when administered 50 mg/ kg i.p. reduced paw licking time, probably modulating glutamatergic neurotransmission. GER blocked reversibly components of the compound action potential (CAP) recorded in isolated sciatic nerve in a concentration-and drug exposure time-dependent manner: 1 mM to 120 min. for the first component and 0.6 mM to 90 min. for the second component. The IC 50 was calculated for the peak-to-peak amplitude (PPA) at 0.48 AE 0.04 mM. The conduction velocity was also reduced by exposure to GER starting from the concentration of 0.3 mM for both components of the CAP. In conclusion, it is suggested that GER has antinociceptive activity, especially in pain related to inflammation, and in part related to reduced peripheral nerve excitability.
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
The tested doses of OXL were safe, with no motor impairment, and show clear antinociceptive and anticonvulsant potential. Future investigations with this monoterpene may lead to the development of a new molecule with even higher potency and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.