Abstract. UML activity diagrams have become an established notation to model control and data flow on various levels of abstraction, ranging from fine-grained descriptions of algorithms to high-level workflow models in business applications. A formal semantics has to capture the flexibility of the interpretation of activity diagrams in real systems, which makes it inappropriate to define a fixed formal semantics. In this paper, we define a semantics with semantic variation points that allow for a customizable, application-specific interpretation of activity diagrams. We examine concrete variants of the activity diagram semantics which may also entail variants of the syntax reflecting the intended use at hand.
ZusammenfassungDie Darstellung von Lernmaterialien erfolgt in den meisten Fällen durch statische, mit interaktiven Applets aufgewertete HTML-Seiten. Ein ganzheitliches Lernerlebnis mit individueller Adaptivität wird mit dieser einfachen Kodierung von Lernmaterialien allerdings nur in einem stark eingeschränkten Sinne ermöglicht. Erst durch eine verstärkte Einbindung von interaktiven Lernelementen in Kombination mit dynamisch generierten Seiten und einer individuellen Adaption der Lernumgebung an den jeweilig Lernenden kann echter Mehrwert im Sinne weitergehender didaktischer Unterstützung erzielt werden. Zunächst präsentieren wir die mediendidaktische Konzeption und Umsetzung der virtuellen Lernumgebung SMARTFRAME (www.smartframe.de). Aus konzeptioneller Sichtweise soll aufgezeigt werden, wie eine ganzheitliche Adaption der Lernumgebung an individuelle Lernprozesse erreicht werden kann, die über die bereits übliche Interaktivität einzelner Lernmodule und benutzerspezifischer Eingangskonfigurationen hinausgeht. Im Anschluss wird schematisch die technische Realisierung des Transformationsprozesses der XML-kodierten Lernobjekte beschrieben, der sich durch eine dynamische – d.h. beim Abruf der Inhalte – lernerspezifische Adaptivität der Lernmaterialien in Bezug auf deren Zusammensetzung und Präsentation auszeichnet.
Code generation from models is a core activity in model-driven development (MDD). For complex systems it is usually impossible to generate the entire software system from models alone. Thus, MDD requires mechanisms for integrating generated and handwritten code. Applying such mechanisms without considering their effects can cause issues in projects with many model and code artifacts, where a sound integration for generated and handwritten code is necessary. We provide an overview of mechanisms for integrating generated and handwritten code for object-oriented languages. In addition to that, we define and apply criteria to compare these mechanisms. The results are intended to help MDD tool developers in choosing an appropriate integration mechanism. * K. Hölldobler is supported by the DFG GK/1298 Algo-Syn. on different properties of code integration mechanisms to assess and compare these mechanisms. The presented criteria are based on a decade of experiences in object-oriented software engineering and MDD research (Rumpe, 2011; Rumpe, 2012), code generator development and code integration research Schindler, 2012), and experiences with MDD processes within various domains including automotive , cloud computing (Navarro Pérez and Rumpe, 2013), robotics (Ringert et al., 2013), and smart buildings (Kurpick et al., 2012).We introduce eight handwritten code integration mechanisms and evaluate each with respect to our criteria. Moreover, we show strengths and weaknesses of each integration mechanism in the evaluation results. By means of this, we seek to increase the comparability between the integration mechanisms. In particular, this overview is intended to be used by MDD tool developers to find a proper integration mechanism on a case-by-case basis.Please note, that the list of integration mechanisms and evaluation criteria presented in this paper does not claim to be complete. However, if further integration mechanisms need to be compared or the mechanisms [GHK+15] T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.