This paper presents a method to reconstruct moving objects from cone beam X-ray projections acquired during a single rotational run using a given motion vector field. The method is applicable to voxel driven cone-beam filtered back-projection reconstruction approaches. Here, a formulation based on the algorithm of Feldkamp, Davis, and Kress (FDK) is presented. The motion correction is applied during the back-projection step by shifting the voxel to be reconstructed according to the motion vector field. The method is applied to three-dimensional (3-D) rotational X-ray angiography. Projections from a beating coronary heart phantom are simulated. Motion-compensated reconstructions with varying accuracy of the applied motion field are carried out for a late diastolic heart phase and compared to the reconstruction obtained with the standard FDK-method from projections of the corresponding motion-free model in the same heart phase. Furthermore, gated reconstructions are calculated by weighting the projections according to their cardiac phase without using a motion vector field. Different gating window widths are applied, and the reconstructions are compared. Using the correct motion field with the motion-compensated reconstruction, the image quality of the standard reconstruction from the corresponding motion-free coronary model can almost be recovered. The reconstructed image quality stays acceptable if the accuracy of the motion field sampling points is better than 1 mm. The gated reconstructions with a window width of 15%-20% of the cardiac cycle lead to superior results compared to nearest neighbor gating, especially for histogram based visualization and analysis. The motion-compensated reconstructions provide sharp images of the coronaries far surpassing the image quality of gated reconstructions.
Three-dimensional reconstruction of coronary arteries can be performed during x-ray-guided interventions by gated reconstruction from a rotational coronary angiography sequence. Due to imperfect gating and cardiac or breathing motion, the heart's motion state might not be the same in all projections used for the reconstruction of one cardiac phase. The motion state inconsistency causes motion artefacts and degrades the reconstruction quality. These effects can be reduced by a projection-based 2D motion compensation method. Using maximum-intensity forward projections of an initial uncompensated reconstruction as reference, the projection data are transformed elastically to improve the consistency with respect to the heart's motion state. A fast iterative closest-point algorithm working on vessel centrelines is employed for estimating the optimum transformation. Motion compensation is carried out prior to and independently from a final reconstruction. The motion compensation improves the accuracy of reconstructed vessel radii and the image contrast in a software phantom study. Reconstructions of human clinical cases are presented, in which the motion compensation substantially reduces motion blur and improves contrast and visibility of the coronary arteries.
In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.
A 3-D reconstruction of the coronary arteries offers great advantages in the diagnosis and treatment of cardiovascular disease, compared to 2-D X-ray angiograms. Besides improved roadmapping, quantitative vessel analysis is possible. Due to the heart's motion, rotational coronary angiography typically provides only 5-10 projections for the reconstruction of each cardiac phase, which leads to a strongly undersampled reconstruction problem. Such an ill-posed problem can be approached with regularized iterative methods. The coronary arteries cover only a small fraction of the reconstruction volume. Therefore, the minimization of the mbiL(1) norm of the reconstructed image, favoring spatially sparse images, is a suitable regularization. Additional problems are overlaid background structures and projection truncation, which can be alleviated by background reduction using a morphological top-hat filter. This paper quantitatively evaluates image reconstruction based on these ideas on software phantom data, in terms of reconstructed absorption coefficients and vessel radii. Results for different algorithms and different input data sets are compared. First results for electrocardiogram-gated reconstruction from clinical catheter-based rotational X-ray coronary angiography are presented. Excellent 3-D image quality can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.